分析 (1)利用用五点法做函数y=Asin(ωx+φ)的图象的方法,作出f(x)在区间[0,π]的简图.
(2)利用正弦函数的减区间,求得函数f(x)的单调递减区间.
解答 解:(1)对于函数f(x)=sin(2x-$\frac{3π}{4}$),∵x∈[0,π],可得2x-$\frac{3π}{4}$∈[-$\frac{3π}{4}$,$\frac{5π}{4}$],列表如下:
| 2x-$\frac{3π}{4}$ | -$\frac{3π}{4}$ | -$\frac{π}{2}$ | 0 | $\frac{π}{2}$ | π | $\frac{5π}{4}$ |
| x | 0 | $\frac{π}{8}$ | $\frac{3π}{8}$ | $\frac{5π}{8}$ | $\frac{7π}{8}$ | π |
| f(x) | -$\frac{\sqrt{2}}{2}$ | -1 | 0 | 1 | 0 | -$\frac{\sqrt{2}}{2}$ |
点评 本题主要考查用五点法做函数y=Asin(ωx+φ)的图象,正弦函数的减区间,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | -$\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -$\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -2 | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{\sqrt{10}}{5}$ | C. | $\frac{3\sqrt{10}}{5}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com