分析 (1)设等差数列{an}公差为d>0,由a2=4,a4+a6=20可求得公差为d及数列{an}的通项公式;
(2)由(1)知an=2n,由裂项法得$\frac{4}{{a}_{n}{a}_{n+1}}$=4×$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$)=($\frac{1}{n}$-$\frac{1}{n+1}$),从而可求得数列$\left\{{\frac{4}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Sn.
解答 解:(1)设等差数列{an}公差为d,则d>0,
∵a4+a6=2a5=20,
∴a5=10,又a2=4,
∴d=$\frac{{a}_{5}{-a}_{2}}{5-2}$=2,
∴an=a2+(n-2)d=4+2(n-2)=2n;
(2)∵$\frac{4}{{a}_{n}{a}_{n+1}}$=$\frac{4}{2n(2n+2)}$=$\frac{1}{n(n+1)}$=($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Sn=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
点评 本题考查数列的求和,突出考查裂项法的应用,求得数列{an}的通项公式是关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [0,1)∪(2,+∞) | B. | [0,1]∪(2,+∞) | C. | [0,1] | D. | [0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 参赛选手成绩所在区间 | (40,50] | (50,60) |
| 每名选手能够进入第二轮的概率 | $\frac{1}{2}$ | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1,1 | B. | $-\frac{3}{2},-1$ | C. | $-\frac{3}{2},3$ | D. | $-2,\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com