精英家教网 > 高中数学 > 题目详情
6.递增数列{an}是等差数列,a2=4,a4+a6=20.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{\frac{4}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Sn

分析 (1)设等差数列{an}公差为d>0,由a2=4,a4+a6=20可求得公差为d及数列{an}的通项公式;
 (2)由(1)知an=2n,由裂项法得$\frac{4}{{a}_{n}{a}_{n+1}}$=4×$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$)=($\frac{1}{n}$-$\frac{1}{n+1}$),从而可求得数列$\left\{{\frac{4}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Sn

解答 解:(1)设等差数列{an}公差为d,则d>0,
∵a4+a6=2a5=20,
∴a5=10,又a2=4,
∴d=$\frac{{a}_{5}{-a}_{2}}{5-2}$=2,
∴an=a2+(n-2)d=4+2(n-2)=2n;       
(2)∵$\frac{4}{{a}_{n}{a}_{n+1}}$=$\frac{4}{2n(2n+2)}$=$\frac{1}{n(n+1)}$=($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Sn=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

点评 本题考查数列的求和,突出考查裂项法的应用,求得数列{an}的通项公式是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.圆x2+y2+2x+4y+1=0上到直线x+y+1=0的距离为1的点有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设A、B是两个非空集合,定义A×B={x|x∈A∪B且x∉A∩B},已知A={x|y=$\sqrt{2x-{x}^{2}}$},B=$\{y|y=\frac{1}{x},0<x<1\}$,则A×B=(  )
A.[0,1)∪(2,+∞)B.[0,1]∪(2,+∞)C.[0,1]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等差数列{an}的公差d≠0,且a1、a3、a9成等比数列,则$\frac{{{a_1}+{a_4}}}{{{a_2}+{a_6}}}$的值是$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)计算:[(-2)10]${\;}^{\frac{1}{2}}$+(-1)0+2${\;}^{-2+lo{g}_{2}3}$+$\root{3}{(-\frac{3}{4})^{3}}$;
(2)已知角α终边上一点P(-4a,3a),a≠0,求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=(x-a)6,若$\frac{f′(0)}{f(0)}$=-3,则f(x)的展开式中的x4系数为60.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在(40,60)内的选手可以参加复活赛,如果通过,也可以参加第二轮比赛.
(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,估计这200名参赛选手的成绩平分数和中位数;
(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率如表:
 参赛选手成绩所在区间 (40,50] (50,60)
 每名选手能够进入第二轮的概率 $\frac{1}{2}$ $\frac{2}{3}$
假设每名选手能否通过复活赛相互独立,现有4名选手的成绩分别为(单位:分)43,45,52,58,记这4名选手在复活赛中通过的人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=1-2sin2x+2cosx的最大值和最小值分别为(  )
A.-1,1B.$-\frac{3}{2},-1$C.$-\frac{3}{2},3$D.$-2,\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,a1=5且an=2an-1+2n-1(n≥2).
(1)证明:数列{$\frac{{a}_{n}-1}{{2}^{n}}$}为等差数列;
(2)若33≤an<193,求n的取值的集合.

查看答案和解析>>

同步练习册答案