分析 因为{an}是等差数列,故a1、a3、a9都可用d表达,又因为a1、a3、a9恰好是等比数列,所以有a32=a1a9,即可求出d,即可求比值.
解答 解:等差数列{an}中,a1=a1,a3=a1+2d,a9=a1+8d,
因为a1、a3、a9恰好是某等比数列,
所以有a32=a1a9,即(a1+2d)2=a1(a1+8d),
解得d=a1,
则$\frac{{{a_1}+{a_4}}}{{{a_2}+{a_6}}}$=$\frac{2{a}_{1}+3d}{2{a}_{1}+6d}$=$\frac{5d}{8d}$=$\frac{5}{8}$.
故答案是:$\frac{5}{8}$.
点评 本题考查等差数列的性质,属基础知识、基本运算的考查.
科目:高中数学 来源: 题型:选择题
| A. | sinx6=1 | B. | .sinx6=(x6+1)cosx6 | ||
| C. | sinx6=kcosx6 | D. | sinx6=(x6+1)tanx6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com