精英家教网 > 高中数学 > 题目详情
16.已知x,y满足$\left\{\begin{array}{l}x≥1\\ x+y≤4\\ x-2y-1≤0\end{array}\right.$,则z=2x+y的最大值为(  )
A.3B.4C.6D.7

分析 作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.

解答 解:作出不等式组对应的平面区域如图:(阴影部分)
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点C时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x+y=4}\\{x-2y-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,即C(3,1),
代入目标函数z=2x+y得z=2×3+1=6+1=7.
即目标函数z=2x+y的最大值为7.
故选:D.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知全集U=R,集合A={x|x≤-2或x≥3},B={x|x<-1或x>4},那么集合(∁UA)∩B等于(  )
A.{x|-2≤x<4}B.{x|-2<x<3}C.{x|-2<x<-1}D.{x|-2<x<-1或3<x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,a,b,c分别是角A,B,C的对边,若C=30°,b=3,△ABC的面积为$\frac{3\sqrt{3}}{4}$,则c=(  )
A.1B.2C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=Acos(ωx+φ)(A,ω,φ均为正常数)的最小正周期为π,当x=$\frac{5π}{12}$时,函数f(x)取得最小值,则下列结论正确的是(  )
A.f(1)<f(-1)<f(0)B.f(0)<f(1)<f(-1)C.f(-1)<f(0)<f(1)D.f(1)<f(0)<f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.$\int_0^1{|x-1|}dx$=(  )
A.1B.2C.3D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等差数列{an}中,a2=5,a4=9,则{an}的前5项和S5=(  )
A.14B.25C.35D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,A、B是水平面上两个点,相距800m,在A点测得山顶C的仰角是25°,∠BAD=40°,又在点B测得∠ABD=40°,其中D点是点C在水平面上的垂足.求山高CD(精确到1m).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠BAC=90°,AB=AC=2,$A{A_1}=\sqrt{3}$.M,N分别为BC和CC1的中点,P为侧棱BB1上的动点.
(Ⅰ)求证:平面APM⊥平面BB1C1C;
(Ⅱ)若P为线段BB1的中点,求证:A1N∥平面APM;
(Ⅲ)试判断直线BC1与平面APM是否能够垂直.若能垂直,求PB的值;若不能垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=({e^x}+\frac{a}{e^x}){x^3}$为偶函数,则实数a=-1.

查看答案和解析>>

同步练习册答案