| A. | f(1)<f(-1)<f(0) | B. | f(0)<f(1)<f(-1) | C. | f(-1)<f(0)<f(1) | D. | f(1)<f(0)<f(-1) |
分析 由题意和函数的周期性可得ω,再由最值可得φ值,由函数的图象和单调性以及诱导公式可得大小关系.
解答 解:∵函数f(x)=Acos(ωx+φ)(A,ω,φ均为正常数)的最小正周期为π,
∴$\frac{2π}{ω}$=π,解得ω=2,故f(x)=Acos(2x+φ),
又∵当x=$\frac{5π}{12}$时,函数f(x)取得最小值,
∴2•$\frac{5π}{12}$+φ=kπ,解得φ=kπ-$\frac{5π}{6}$,k∈Z,
由题意当k=1时φ=$\frac{π}{6}$,故f(x)=Acos(2x+$\frac{π}{6}$),
故f(0)=Acos$\frac{π}{6}$,f(1)=Acos(2+$\frac{π}{6}$)
=Acos(-2-$\frac{π}{6}$),f(-1)=Acos(-2+$\frac{π}{6}$),
由-π<-2-$\frac{π}{6}$<-2+$\frac{π}{6}$<0和函数y=cosx在(-π,0)
单调递增可得f(1)<f(-1)<f(0),
故选:A.
点评 本题考查余弦函数的图象和单调性,涉及诱导公式的应用和函数图象的对称性,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com