精英家教网 > 高中数学 > 题目详情
14.已知椭圆C:mx2+3my2=1(m>0)的长轴长为2$\sqrt{6}$,O为坐标原点.
(1)求椭圆C的方程和离心率;
(2)设点A(3,0),动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若|BA|=|BP|,求四边形OPAB面积的最小值.

分析 (1)将椭圆方程化为标准方程,由题意可得a,可得b,即可得到椭圆方程,再由离心率公式计算即可得到所求值;
(2)设AP中点为D,由|BA|=||BP|,所以BD⊥AP,求得AP的斜率,进而得到BD的斜率和中点,可得直线BD的方程,即有B的坐标,求得四边形OPAB的面积为S=S△OAP+S△OMB,化简整理,运用基本不等式即可得到最小值.

解答 解:(1)椭圆C:mx2+3my2=1,即为$\frac{{x}^{2}}{\frac{1}{m}}$+$\frac{{y}^{2}}{\frac{1}{3m}}$=1,所以a2=$\frac{1}{m}$,b2=$\frac{1}{3m}$,
a2=$\frac{1}{m}$,b2=$\frac{1}{3m}$,可得2a=2$\frac{1}{\sqrt{m}}$=2$\sqrt{6}$,
m=$\frac{1}{6}$,可得a=$\sqrt{6}$,b=$\sqrt{2}$,
即有椭圆C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1,
由c=$\sqrt{{a}^{2}-{b}^{2}}$=2,即e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$;
(2)设AP中点为D,由|BA|=||BP|,所以BD⊥AP,
由题意,可得直线BD的斜率存在,P(x0,y0)(y0≠0),
则D($\frac{{x}_{0}+3}{2}$,$\frac{{y}_{0}}{2}$),直线AP的斜率为kAP=$\frac{{y}_{0}}{{x}_{0}-3}$,
直线BD的斜率为-$\frac{1}{{k}_{AP}}$=$\frac{3-{x}_{0}}{{y}_{0}}$,
可得BD的方程为y-$\frac{{y}_{0}}{2}$=$\frac{3-{x}_{0}}{{y}_{0}}$(x-$\frac{{x}_{0}+3}{2}$),
令x=0可得y=$\frac{{{x}_{0}}^{2}+{{y}_{0}}^{2}-9}{2{y}_{0}}$,即B(0,$\frac{{{x}_{0}}^{2}+{{y}_{0}}^{2}-9}{2{y}_{0}}$),
由$\frac{{{x}_{0}}^{2}}{6}$+$\frac{{{y}_{0}}^{2}}{2}$=1,可得x02=6-3y02
化简可得B(0,$\frac{-2{{y}_{0}}^{2}-3}{2{y}_{0}}$),
则四边形OPAB的面积为S=S△OAP+S△OMB=$\frac{1}{2}$×3|y0|+$\frac{1}{2}$×3|$\frac{-2{{y}_{0}}^{2}-3}{2{y}_{0}}$|
=$\frac{3}{2}$(2|y0|+$\frac{3}{2|{y}_{0}|}$)≥$\frac{3}{2}$•2$\sqrt{2|{y}_{0}|•\frac{3}{2|{y}_{0}|}}$=3$\sqrt{3}$,
当且仅当2|y0|=$\frac{3}{2|{y}_{0}|}$,即y0=±$\frac{\sqrt{3}}{2}$∈[-$\sqrt{2}$,$\sqrt{2}$]时,等号成立.
所以四边形OPAB面积的最小值为3$\sqrt{3}$.

点评 本题考查椭圆的方程和离心率的求法,注意运用椭圆的性质和离心率公式,考查四边形面积的最值的求法,注意运用直线的斜率公式和基本不等式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=Acos(ωx+φ)(A,ω,φ均为正常数)的最小正周期为π,当x=$\frac{5π}{12}$时,函数f(x)取得最小值,则下列结论正确的是(  )
A.f(1)<f(-1)<f(0)B.f(0)<f(1)<f(-1)C.f(-1)<f(0)<f(1)D.f(1)<f(0)<f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠BAC=90°,AB=AC=2,$A{A_1}=\sqrt{3}$.M,N分别为BC和CC1的中点,P为侧棱BB1上的动点.
(Ⅰ)求证:平面APM⊥平面BB1C1C;
(Ⅱ)若P为线段BB1的中点,求证:A1N∥平面APM;
(Ⅲ)试判断直线BC1与平面APM是否能够垂直.若能垂直,求PB的值;若不能垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.阅读如图的程序框图,运行相应的程序,则输出S的值为(  )
A.10B.13C.-10D.-13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若全集U={1,2,3,4,5},M={1,4},N={2,3},则集合{5}等于(  )
A.M∪NB.M∩NC.(∁UM)∪(∁UN)D.(∁UM)∩(∁UN)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={x|x2-x-6<0,x∈R},B={y|y=|x|-3,x∈A},则A∩B等于(  )
A.{x|0<x<3}B.{x|-1<x<0}C.{x|-2<x<0}D.{x|-3<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=({e^x}+\frac{a}{e^x}){x^3}$为偶函数,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点$A(\sqrt{3},\frac{1}{2})$,离心率为$\frac{{\sqrt{3}}}{2}$,点F1,F2分别为其左、右焦点.
(1)求椭圆E的标准方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点P,Q,且$\overrightarrow{OP}⊥\overrightarrow{OQ}$?若存在,求出该圆的方程,并求|PQ|的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{OA}$=(1,0),$\overrightarrow{OB}$=(1,1),(x,y)=$λ\overrightarrow{OA}+μ\overrightarrow{OB}$,若0≤λ≤1≤μ≤2时,z=$\frac{x}{m}$+$\frac{y}{n}$(m>0,n>0)的最大值为2,则m+n的最小值为$\frac{5}{2}$+$\sqrt{6}$.

查看答案和解析>>

同步练习册答案