【题目】已知四面体
的所有顶点在球
的表面上,
平面
,
,
,则球
的表面积为_________.
【答案】![]()
【解析】
将四面体补成直三棱柱
,根据题意画出图象,设
,
的外心分别为
,
,则点
为线段
的中点,求出
,在
根据正弦定理,求出
,根据勾股定理和球的表面积公式,即可求得答案.
四面体
的所有顶点在球
的表面上,且
平面
,
将四面体补成直三棱柱
,
设
,
的外心分别为
,
,则点
为线段
的中点,
根据直棱柱特征可得:
面![]()
根据题意画出图象,如图:
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565330432/EXPLANATION/6f612c2d35a74b139ecb71f4a35bdeaa.png]
可得:
,
在
根据正弦定理:
(
为三角形外接圆半径)
根据
为
的外心,可得
为
外接圆半径
即
,
![]()
面
,
面![]()
![]()
![]()
故
为直角三角形
在
中,根据勾股定理可得:
,
.
故答案为:
.
科目:高中数学 来源: 题型:
【题目】已知函数
-2为自然对数的底数,
).
(1)若曲线
在点
处的切线与曲线
至多有一个公共点时,求
的取值范围;
(2)当
时,若函数
有两个零点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在边长等于2正方形
中,点Q是
中点,点M,N分别在线段
上移动(M不与A,B重合,N不与C,D重合),且
,沿着
将四边形
折起,使得面
面
,则三棱锥
体积的最大值为________;当三棱锥
体积最大时,其外接球的表面积为________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,点
在
轴上,点
在
轴上,且
,
,当点
在
轴上运动时,动点
的轨迹为曲线
.过
轴上一点
的直线交曲线
于
,
两点.
(1)求曲线
的轨迹方程;
(2)证明:存在唯一的一点
,使得
为常数,并确定
点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”. 为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须相邻安排的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy上取两个定点A1(
,0),A2(
,0),再取两个动点N1(0,m),N2(0,n),且mn=2.
(1)求直线A1N1与A2N2交点M的轨迹C的方程;
(2)过R(3,0)的直线与轨迹C交于P,Q,过P作PN⊥x轴且与轨迹C交于另一点N,F为轨迹C的右焦点,若
(λ>1),求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左顶点为A,O为坐标原点,
,C的离心率为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知不经过点A的直线
交椭圆C于M,N两点,线段MN的中点为B,若
,求证:直线l过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com