【题目】已知函数
,
为自然对数的底数,
.
(1)试讨论函数
的单调性;
(2)当
时,
恒成立,求实数
的取值范围.
【答案】(1) 当
时,
在
上单调递增;当
时,
在
上单调递增,在
上单调递减.
(2)
.
【解析】试题分析:(1)对函数求导,关注定义域,对参数 a进行讨论,得出函数的单调性;(2)解决恒成立的最基本方法就是分离参数,化为
对
时恒成立.设右边为函数g(x),通过两次求导研究函数g(x)的单调性和最大值,最后利用极值原理得出a的范围.
试题解析:
(1)
的定义域为
,
.
若
时,则
,∴
在
上单调递增;
若
时,则由
,∴
.
当
时,
,∴
在
上单调递增;
当
时,
,∴
在
上单调递减.
综上所述,当
时,
在
上单调递增;
当
时,
在
上单调递增,在
上单调递减.
(2)由题意得:
对
时恒成立,
∴
对
时恒成立.
令
,(
),
∴
.
令
,
∴
对
时恒成立,
∴
在
上单调递减,
∵
,
∴当
时,
,∴
,
在
上单调递增;
当
时,
,∴
,
在
上单调递减.
∴
在
处取得最大值
,
∴
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为菱形,
平面
,
,
,
,
分别是
,
的中点.
![]()
(1)证明:
;
(2)设
为线段
上的动点,若线段
长的最小值为
,求二面角
的余弦值.
【答案】(1)见解析;(2)![]()
【解析】试题分析:(1)证明线线垂直则需证明线面垂直,根据题意易得
,然后根据等边三角形的性质可得
,又
,因此
得
平面
,从而得证(2)先找到EH什么时候最短,显然当线段
长的最小时,
,在
中,
,
,
,∴
,由
中,
,
,∴
.然后建立空间直角坐标系,写出两个面法向量再根据向量的夹角公式即可得余弦值
解析:(1)证明:∵四边形
为菱形,
,
∴
为正三角形.又
为
的中点,∴
.
又
,因此
.
∵
平面
,
平面
,∴
.
而
平面
,
平面
且
,
∴
平面
.又
平面
,∴
.
![]()
(2)如图,
为
上任意一点,连接
,
.
![]()
当线段
长的最小时,
,由(1)知
,
∴
平面
,
平面
,故
.
在
中,
,
,
,
∴
,
由
中,
,
,∴
.
由(1)知
,
,
两两垂直,以
为坐标原点,建立如图所示的空间直角坐标系,又
,
分别是
,
的中点,
可得
,
,
,
,
,
,
,
所以
,
.
设平面
的一法向量为
,
则
因此
,
取
,则
,
因为
,
,
,所以
平面
,
故
为平面
的一法向量.又
,
所以
.
易得二面角
为锐角,故所求二面角的余弦值为
.
![]()
【题型】解答题
【结束】
20
【题目】【2018湖北七市(州)教研协作体3月高三联考】已知椭圆
:
的左顶点为
,上顶点为
,直线
与直线
垂直,垂足为
点,且点
是线段
的中点.
![]()
(I)求椭圆
的方程;
(II)如图,若直线
:
与椭圆
交于
,
两点,点
在椭圆
上,且四边形
为平行四边形,求证:四边形
的面积
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于下列四个命题:
p1:x0∈(0,+∞),
;
p2:x0∈(0,1),lo
x0>lo
x0;
p3:x∈(0,+∞),
<lo
x;
p4:x∈
<lo
x.
其中的真命题是( )
A. p1,p3 B. p1,p4
C. p2,p3 D. p2,p4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的方程是
,将
向上平移2个单位得到曲线
.
(1)求曲线
的极坐标方程;
(2)直线
的参数方程为
(
为参数),判断直线
与曲线
的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市民用水拟实行阶梯水价,每人用水量中不超过
立方米的部分按4元/立方米收费,超出
立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:
![]()
(1)如果
为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,
至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替,当
时,估计该市居民该月的人均水费.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an﹣3.
(1)求数列{an}的通项公式;
(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着经济的发展,某城市的市民收入逐年增长,表1是该城市某银行连续五年的储蓄存款额(年底余额):
表1
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款额y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将表1的数据进行了处理,令t=x-2 010,z=y-5,得到表2:
表2
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(1)z关于t的线性回归方程是________;y关于x的线性回归方程是________;
(2)用所求回归方程预测到2020年年底,该银行储蓄存款额可达________千亿元.
(附:线性回归方程
=
x+
,其中
=
,
=
-![]()
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com