精英家教网 > 高中数学 > 题目详情

【题目】已知函数(其中是自然对数的底数)

(1)若,当时,试比较2的大小;

(2)若函数有两个极值点,求的取值范围,并证明:

【答案】12见解析

【解析】试题分析: 的导数,利用判定的单调性,从而求出的单调区间,可比较的大小;

先求导数,根据题意知的两个根,令,利用导数得到函数的单调区间,继而得到的取值范围,知,则,又由 ,即可得到

解析:(1)当时, ,则,令

由于,于是为增函数,所以,即恒成立,

从而为增函数,故

2)函数有两个极值点,则的两个根,即方程有两个根,

,则

时, ,函数单调递增且

时, ,函数单调递增且

时, ,函数单调递增且

要使方程有两个根,只需,如图所示

故实数的取值范围是

又由上可知函数的两个极值点满足,由.

由于,故,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆 与抛物线 相交于 两点,分别以点 为切点作圆的切线.若切线恰好都经过抛物线的焦点,则( )

A. B. C. D.

【答案】A

【解析】由题得设A ,联立圆E和抛物线得: ,代入点A,AF为圆的切线,故,由抛物线得定义可知:AF=,故化简得: ,将点A代入圆得: ,而=,故故选A

点睛:此题几何关系较为复杂,我们根据问题可知借此题关键为找到pr的关系,我们可根据圆和抛物线相交结合抛物线的焦点弦长结论综合计算可得其关系,从而求解

型】单选题
束】
12

【题目】已知函数在点 处的切线为,若直线轴上的截距恒小于,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中,且为常数).

(1)若对于任意的,都有成立,求的取值范围;

(2)在(1)的条件下,若方程上有且只有一个实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20175月,来自一带一路沿线的20国青年评选出了中国的新四大发明:高铁、扫码支付、共享单车和网购。为拓展市场,某调研组对甲、乙两个品牌的共享单车在5个城市的用户人数进行统计,得到如下数据:

城市

品牌

甲品牌(百万)

4

3

8

6

12

乙品牌(百万)

5

7

9

4

3

Ⅰ)如果共享单车用户人数超过5百万的城市称为优质潜力城市,否则非优,请据此判断是否有85%的把握认为优质潜力城市与共享单车品牌有关?

Ⅱ)如果不考虑其它因素,为拓展市场,甲品牌要从这5个城市中选出3个城市进行大规模宣传.

①在城市Ⅰ被选中的条件下,求城市Ⅱ也被选中的概率;

②以表示选中的城市中用户人数超过5百万的个数,求随机变量的分布列及数学期望

下面临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式: K2=,n=a+b+c+d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数时都取得极值.(1)求的值;(2)若对 恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数, .

(1)试讨论函数的单调性;

(2)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.

(1)求该椭圆的标准方程;

(2)若是椭圆上的动点,求线段中点的轨迹方程;

(3)过原点的直线交椭圆于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(ax2bxc)ex(a>0)的导函数yf′(x)的两个零点为-3和0.

(1)求f(x)的单调区间;

(2)若f(x)的极小值为-1,求f(x)的极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们把日均收看体育节目的时间超过50分钟的观众称为“超级体育迷”,已知5名“超级体育迷”中有2名女性,若从中任选2名,则至少有1名女性的概率为(  )

A. B.

C. D.

查看答案和解析>>

同步练习册答案