【题目】已知函数.(Ⅰ)求函数的最小正周期及单调递增区间;(Ⅱ)将的图像向右平移个单位得到函数的图像,若,求函数的值域.
【答案】(Ⅰ).单调递增区间为[-+k, +k], ; (Ⅱ).
【解析】试题分析:(1)首先通过三角函数的恒等变换,把三角函数的关系式变形成正弦型函数,进一步利用三角函数的性质求出函数的周期和单调区间;(2)利用上步的结论,进一步利用函数的定义域求出三角函数的值域.
试题解析:
(Ⅰ)f(x)=cos x(sin x+cos x)+1
=cos2x+sin x cos x+1
=cos2x+sin2x+
=sin(2x+)+
∵T===
即函数f(x)的最小正周期为.
由f(x)=sin(2x+)+
由2k-≤2x+≤2k+,
解得:-+k≤x≤+k,
故函数f(x)=sin(2x+)+的单调递增区间为[-+k, +k], .
(Ⅱ),x [-,],- ≤2x≤,
∴-≤≤1
∴函数的值域为.
科目:高中数学 来源: 题型:
【题目】函数的定义域为,若存在闭区间[m,n] D,使得函数满足:①在[m,n]上是单调函数;②在[m,n]上的值域为[2m,2n],则称区间[m,n]为的“倍值区间”.下列函数中存在“倍值区间”的有 .(填上所有正确的序号)
①;
②;
③;
④.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线交轴于,且,为坐标原点.
(1)求椭圆的方程;
(2)设是椭圆的上顶点,过点分别作直线交椭圆于两点,设这两条直线的斜率分别为,且,证明:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某书店销售刚刚上市的某知名品牌的高三数学单元卷,按事先拟定的价格进行天试销,每种单价试销天,得到如下数据:
单价(元) | |||||
销量(册) |
(1)求试销天的销量的方差和对的回归直线方程;
(2)预计今后的销售中,销量与单价服从(1)中的回归方程,已知每册单元卷的成本是元,
为了获得最大利润,该单元卷的单价应定为多少元?
附: ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解高中生上学使用手机情况,调查者进行了如下的随机调查:调查者向被调查者提出两个问题:(1)你的学号是奇数吗?(2)你上学时是否经常带手机?要求被调查者背对着调查人员抛掷一枚硬币,如果出现正面,就回答第一问题,否则就回答第二个问题.被调查者不必告诉调查人员自己回答的是哪一个问题,只需回答“是”或“不是”,因为只有被调查者本人知道回答了哪一个问题,所以都如实地做了回答.结果被调查的800人(学号从1至800)中有260人回答了“是”.由此可以估计这800人中经常带手机上学的人数是_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com