精英家教网 > 高中数学 > 题目详情
14.在△ABC中,已知∠A=45°,∠B=75°,点D在AB上,且CD=10.若CD⊥AB,则AB=$30-10\sqrt{3}$.

分析 根据三角函数的定义和直角三角形的性质即可得答案.

解答 解:∠A=45°,∠B=75°,点D在AB上,且CD=10.CD⊥AB,
可得:CD=AD=10,∠BCD=15°.
cos15°=sin75°=$\frac{\sqrt{6}+\sqrt{2}}{4}$,sin15°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
∴tan15°=2$-\sqrt{3}$.
BD=10tan∠BCD=20-10$\sqrt{3}$.
AB=AD+DB=$30-10\sqrt{3}$.
故答案为:$30-10\sqrt{3}$.

点评 本题考查了三角函数的定义的运用和计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知A(4sin θ,6cos θ),B(-4cos θ,6sin θ),当θ为一切实数时,线段AB的中点轨迹为(  )
A.直线B.C.椭圆D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若x=15°,则sin4x-cos4x的值为(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:ax2+y2=2的焦点在x轴上,设坐标原点为O,椭圆C的左焦点为F(-2,0).
(1)求椭圆C的离心率;
(2)分别过F作两条相互垂直的直线l1,l2,且l1交椭圆C于A,B两点,l2交直线x=-3于点D,问四边形OADB能否为平行四边形?若能,求出其面积,若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知a∈[2,4],直线l1:a2x+y-4a2-2=0,l2:x+ay-4-2a=0,l1交y轴的正半轴于A,l2交x轴的正半轴于B,l1、l2相交于点C,试求四边形OACB面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点F(-1,0),直线l:x=1,动点P到点F的距离等于它到直线l的距离.
(Ⅰ)试判断点P的轨迹C的形状,并写出其方程.
(Ⅱ)是否存在过N(-4,-2)的直线m,使得直线m所截得的弦AB恰好被点N所平分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.记cos(-80°)=k,那么tan(-80o)=(  )
A.-$\frac{\sqrt{1-{k}^{2}}}{k}$B.$\frac{\sqrt{1-{k}^{2}}}{k}$C.$\frac{k}{\sqrt{1-{k}^{2}}}$D.-$\frac{k}{\sqrt{1-{k}^{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=4cos({x-\frac{π}{2}})sin({x-\frac{π}{3}})-1$.
(1)求f(x)的最小正周期和单调递增区间;
(2)已知△ABC的内角A,B,C的对边分别为a,b,c,且三边长a,b,c成等差数列,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.△ABC中,内角A,B,C的对边分别为a,b,c.已知边c=2,且asinA-asinB=2sinC-bsinB.
(1)若sinC+sin(B-A)=sin2A,求△ABC的面积;
(2)记AB边的中点为M,求|CM|的最大值,并说明理由.

查看答案和解析>>

同步练习册答案