精英家教网 > 高中数学 > 题目详情
6.记cos(-80°)=k,那么tan(-80o)=(  )
A.-$\frac{\sqrt{1-{k}^{2}}}{k}$B.$\frac{\sqrt{1-{k}^{2}}}{k}$C.$\frac{k}{\sqrt{1-{k}^{2}}}$D.-$\frac{k}{\sqrt{1-{k}^{2}}}$

分析 由已知结合平方关系求得sin80°,再由诱导公式及商的关系求得tan(-80o)的值.

解答 解:∵cos(-80°)=k,
∴$sin80°=\sqrt{1-co{s^2}80°}=\sqrt{1-co{s^2}({-80°})}=\sqrt{1-{k^2}}$,
∴tan(-80°)=-tan80°=-$\frac{sin80°}{cos80°}$=$-\frac{{\sqrt{1-{k^2}}}}{k}$,
故选:A.

点评 本题考查利用诱导公式及同角三角函数基本关系式化简求值,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.(1)已知圆M过点C(1,-1),D(-1,1),且圆心M在x+y-2=0上.求圆M的方程;
(2)圆O的方程为x2+y2=1,直线l1过点A(3,0),且与圆O相切,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某产品的广告费用x万元与销售额y万元的统计数据如下表
广告费用x(万元)2345
销售额y(万元)26m4954
根据上表可得回归方程$\widehat{y}$=9x+10.5,则m为(  )
A.36B.37C.38D.39

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,已知∠A=45°,∠B=75°,点D在AB上,且CD=10.若CD⊥AB,则AB=$30-10\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.当x>1>y时,有x2-2xy+y2≥m[xy-(x+y)+1]恒成立,则实数m的取值范围为[-4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\frac{1}{3}{x^3}+{x^2}-3x$,讨论函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a1>a2>a3>1,则使得${a_i}{x^2}+(a_i^2+1)x+{a_i}>0$(i=1,2,3)都成立的x的取值范围是(  )
A.$(0,\frac{1}{a_3})$B.$(-∞,-{a_3})∪(-\frac{1}{a_3},+∞)$
C.$(-∞,-{a_3}]∪(-\frac{1}{a_3},+∞)$D.$(-∞,-\frac{1}{a_3})∪(-{a_3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法错误的是(  )
A.利用样本数据的散点图可以直观判断两个变量是否可用线性关系表示
B.等高条形图表示的是分类变量的百分比
C.比较两个模型的拟合函数效果,可以比较残差平方和的大小,残差平方和越大的模型,拟合效果越好
D.与两个比值相差越大,两个分类变量相关的可能性就越大

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知△ABC关于AC边的对称图形为△ADC,延长BC边交AD于点E,且AE=5,DE=2,tan∠BAC=$\frac{1}{2}$.
(1)求BC边的长;
(2)求cos∠ACB的值.

查看答案和解析>>

同步练习册答案