分析 (1)令n=1得出b,于是an=An-An-1,根据b2,a3,b3成等差数列求出q,从而得出bn;
(2)使用分项求和与列项求和计算cn的前n项和.
解答 解:(1)∵An=n2+bn,
∴当n=1时,a1=1+b=2,∴b=1.
∴当n≥2时,an=An-An-1=n2+n-(n-1)2-(n-1)=2n.
显然当n=1时,上式仍成立.
∴an=2n.
∵数列{bn}是等比数列,公比为q,b1=2.
∴b2=2q,b3=2q2.又a3=6,b2,a3,b3成等差数列,
∴2q+2q2=12.解得q=2或q=-3(舍).
∴bn=2•2n-1=2n.
(2)cn=2n+$\frac{1}{{n}^{2}+n}$=2n+$\frac{1}{n}$-$\frac{1}{n+1}$.
设{cn}的前n项和为Sn,
则Sn=2+22+23+…+2n+(1-$\frac{1}{2}$)+($\frac{1}{2}-\frac{1}{3}$)+($\frac{1}{3}-\frac{1}{4}$)+…+($\frac{1}{n}-\frac{1}{n+1}$)
=$\frac{2(1-{2}^{n})}{1-2}$+(1-$\frac{1}{n+1}$)
=2n+1-$\frac{1}{n+1}$-1.
点评 本题考查了数列的通项公式,等比数列的求和公式,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{25}$ | B. | $\frac{9}{25}$ | C. | $-\frac{9}{25}$ | D. | $-\frac{7}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 等级 | 优秀 | 合格 | 不合格 |
| 男生(人) | 15 | x | 5 |
| 女生(人) | 15 | 3 | y |
| 优秀 | 男生 | 女生 | 总计 |
| 非优秀 | |||
| 总计 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com