精英家教网 > 高中数学 > 题目详情
17.已知抛物线C:y2=8x的焦点为F,点 M(-2,2),过点F且斜率为k的直线与C交于 A,B两点,若∠AMB=90°,则k=(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.2

分析 写出直线的点斜式方程,与抛物线方程联立得出A,B两点的坐标关系,根据kAM•kBM=-1列方程解出k.

解答 解:抛物线焦点F(2,0),设直线AB的方程为y=k(x-2),
联立方程组$\left\{\begin{array}{l}{{y}^{2}=8x}\\{y=k(x-2)}\end{array}\right.$,消元得k2x-(4k2+8)x+4k2=0.
设A(x1,y1),B(x2,y2),则x1+x2=4+$\frac{8}{{k}^{2}}$,x1x2=4.
∴y1+y2=k(x1+x2)-4k=$\frac{8}{k}$,y1y2=-16.
∵∠AMB=90°,∴kAM•kBM=-1,即$\frac{{y}_{1}-2}{{x}_{1}+2}•\frac{{y}_{2}-2}{{x}_{2}+2}=-1$.
∴y1y2-2(y1+y2)+4+x1x2+2(x1+x2)+4=0.
∴-16-$\frac{16}{k}$+4+4+2(4+$\frac{8}{{k}^{2}}$)+4=0,整理得:k2-4k+4=0,
解得k=2.
故选:D.

点评 本题考查了抛物线的性质,直线与抛物线的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在△ABC内角A,B,C的对边分别是a,b,c,已知a=$2\sqrt{3}$,c=$2\sqrt{2}$,∠A=60°,则∠C的大小为(  )
A.$\frac{π}{4}$或$\frac{3π}{4}$B.$\frac{π}{3}$或$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等差数列{an}的前5项之和为15,则${2^{{a_2}+{a_4}}}$=(  )
A.16B.8C.64D.128

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|x2-x=0},集合B={y|-1<y<1},则A∩B=(  )
A.0B.C.{0}D.{∅}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}的前n项和为An=n2+bn,数列{bn}是等比数列,公比q>0,且满足a1=b1=2,b2,a3,b3成等差数列;
(1)求数列{an}和{bn}的通项公式;
(2)若数列{cn}满足cn=bn+$\frac{1}{A_n}$,求cn的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对某高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到如图散点图.下面关于这位同学的数学成绩的分析中,正确的共有(  )个
①该同学的数学成绩总的趋势是在逐步提高
②该同学在这连续九次测验中的最高分与最低分的差超过40分
③该同学的数学成绩与考试次号具有线性相关性,且为正相关.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\frac{1}{2}$ax2+b,若x∈[-2,2]时,恒有|f(x)|≤1,则ab的最大值是$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知定义在R上的函数f(x)=Asin(ωx+φ)(x>0,A>0)的图象如图所示.
(1)求函数f(x)的解析式;
(2)写出函数f(x)的单调递增区间
(3)设不相等的实数,x1,x2∈(0,π),且f(x1)=f(x2)=-2,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex-kx2,x∈R.
(1)设函数g(x)=f(x)(x2-bx+2),当k=0时,若函数g(x)有极值,求实数b的取值范围;
(2)若f(x)在区间(0,+∞)上单调递增,求k的取值范围.

查看答案和解析>>

同步练习册答案