精英家教网 > 高中数学 > 题目详情
曲线y=x
1
2
与y=x2围成的封闭区域的面积是
 
考点:定积分在求面积中的应用
专题:计算题,导数的概念及应用
分析:先联立两个曲线的方程,求出交点,以确定积分公式中x的取值范围,最后根据定积分的几何意义表示出区域的面积,根据定积分公式解之即可
解答: 解:曲线y=x
1
2
与y=x2的交点坐标为(0,0),(1,1),则
曲线y=x
1
2
与y=x2围成的封闭区域的面积是S=
1
0
x
1
2
-x2)dx=(
2
3
x
3
2
-
1
3
x3
|
1
0
=
1
3

故答案为:
1
3
点评:本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinθ+cosθ=-
5
3
,则cos(2θ-
2
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,若实数x,y满足
x≤1
|y|≤x
x2+y2-4x+2≥0
,此不等式组表示的平面区域的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2lnx,h(x)=x2-x+a.
(1)求函数f(x)的单调区间;
(2)设函数k(x)=f(x)-h(x),若函数k(x)在[1,3]上恰有两个不同零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)用数学归纳法证明等式1+2+3+…+(n+3)=
(n+3)(n+4)
2
(n∈N*);
(2)用数学归纳法证明不等式1+
1
2
+
1
3
+…+
1
n
<2
n
(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)函数y=
-2
x
的值域是
 

(2)函数y=x2+x(-1≤x≤3)的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c,d满足
lna
b
=
c+3
d
=1,则(a-c)2+(b-d)2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={a,b,c}与 B={-1,0,1},映射f:A→B,且有f(a)+f(b)+f(c)=0,则满足这样的映射f的个数为(  )
A、9B、8C、7D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
x2+1,(x≤0)
-2x,x>0
,使函数值为5的x的值是(  )
A、2或-2或-
5
2
B、2或-
5
2
C、2或-2
D、-2

查看答案和解析>>

同步练习册答案