精英家教网 > 高中数学 > 题目详情
设f(x)=-3x2+(6-a)ax+b,若a=1,使f(x)<0恒成立,求b的取值范围.
考点:二次函数的性质
专题:函数的性质及应用
分析:b<3x2-5x,恒成立,利用函数求解y=3x2-5x的最小值,即可.
解答: 解:∵f(x)=-3x2+(6-a)ax+b,
a=1,f(x)=-3x2+5x+b,
∵f(x)<0恒成立,
∴-3x2+5x+b<0,
即b<3x2-5x,恒成立,
y=3x2-5x,x=
5
6
时,最小值为-
25
12

即b<-
25
12
点评:本题考查了不等式的恒成立问题,利用函数最值求解,难度不大,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设坐标平面上的抛物线C:y=x2,过第一象限的点(a,a2)作抛物线C的切线l,则直线l与y轴的交点Q的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆O是△ABC的外接圆,∠BAC的平分线交BC于点F,D是AF的延长线与⊙O的交点,AC的延线与⊙O的切线DE交于点E.
(1)求证:
CE
BD
=
DE
AD

(2)若BD=3
2
,EC=2,CA=6,求BF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx3+nx2(m,n∈R)在x=2时有极值,其图象在点(1,f(1))处的切线与直线3x+y=0平行.
(1)求m,n的值; 
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:平行四边形ABCD,AB=1,BC=2,∠BAD=60°,E为AD中点.将?ABCD沿BE折成直二面角.
(1)求证:CE⊥AB;
(2)求点B到面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
9
2
x2+6x-a.
(1)对?x∈R,f′(x)≥m恒成立,求m的最大值;
(2)若函数f(x)有且仅有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对实数a和b,定义运算“?”:a?b=
a,a-b≤1
b,a-b>1
,设函数f(x)=(x2-2)?(x-1),x∈R,
(1)求函数f(x)的单调区间;
(2)若函数f(x)=c恰有两个实根,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ln(2x+3)+x2的单调区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为平面ABC内任一点,若A,B,C三点共线,是否存在α,β∈R,使
OC
OA
OB
,其中α+β=1?

查看答案和解析>>

同步练习册答案