精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$单位向量,若|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$,则<$\overrightarrow{a}$,$\overrightarrow{b}$>=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

分析 通过向量的模的平方,结合数量积求解即可.

解答 解:向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$单位向量,若|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$,
可得|$\overrightarrow{a}$-$\overrightarrow{b}$|2=3,即${\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$=3.
$4-2\left|\overrightarrow{a}\right|•\left|\overrightarrow{b}\right|cos<\overrightarrow{a},\overrightarrow{b}>+1$=3,
$cos<\overrightarrow{a},\overrightarrow{b}>$=$\frac{1}{2}$.
∴$<\overrightarrow{a},\overrightarrow{b}>=\frac{π}{3}$.
故选:C.

点评 本题考查平面向量的数量积以及向量的夹角的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知动点P到定点F(2,0)的距离和它到定直线x=4的距离的比值为$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求动点P的轨迹Ω的方程;
(Ⅱ)若过点F的直线与点P的轨迹Ω相交于M,N两点(M,N均在y轴右侧),点A(0,2)、B(0,-2),设A,B,M,N四点构成的四边形的面积为S,求S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,网格纸中的小正方形的边长为1,图中组线画出的是一个几何体的三视图,则这个几何体的表面积为(  )
A.$\frac{1}{2}$($\sqrt{22}+3\sqrt{2}+4$)B.$\frac{1}{2}$($\sqrt{22}+3\sqrt{2}+8$)C.$\frac{1}{2}$($\sqrt{22}+\sqrt{2}+8$)D.$\frac{1}{2}$($\sqrt{22}+2\sqrt{2}+8$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在以O为极点的极坐标系中,若圆ρ=2cosθ与直线ρ(cosθ+sinθ)=a相切,且切点在第一象限,则实数a的值为1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框应该填入(  )
A.P=$\frac{4M}{N}$B.P=$\frac{N}{4M}$C.P=$\frac{M}{N}$D.p=$\frac{N}{M}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“?x0∈R,x02+2x0+2≤0”的否定是(  )
A.?x∈R,x2+2x+2>0B.?x∈R,x2+2x+2≥0
C.?x0∈R,x02+2x0+2<0D.?x∈R,x02+2x0+2>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个几何体的三视图如图所示,那么这个几何体的体积为(  )
A.16πB.C.D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知分段函数f(x)=$\left\{\begin{array}{l}{(x-2)^{2},x≤4}\\{lo{g}_{\frac{1}{2}}x+6,x>4}\end{array}\right.$,若关于x的方程f(x)-kx-2k=0有3个不同的实数解,则k的取值范围是(  )
A.(0,2)B.﹙0,$\frac{2}{3}$﹚C.﹙$\frac{2}{3}$,2]D.[$\frac{2}{3}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足不等式$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-4≥0}\\{x≤3}\end{array}\right.$,则x2+y2的最小值是8.

查看答案和解析>>

同步练习册答案