精英家教网 > 高中数学 > 题目详情
已知函数f(x)=k•a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
(1)求实数k,a的值;
(2)若函数g(x)=
f(x)-1f(x)+1
,试判断函数g(x)的奇偶性,并说明理由.
分析:(1)由函数f(x)=k•a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8),分别代入函数解析式,构造关于k,a的方程组,解方程组可得实数k,a的值;
(2)由(1)求出函数g(x)=
f(x)-1
f(x)+1
的解析式,并根据指数的运算性质进行化简,进而根据函数奇偶性的定义,可得答案.
解答:解:(1)∵函数f(x)=k•a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
∴k=1,且k•a-3=8
解得k=1,a=
1
2

(2)函数g(x)为奇函数,理由如下:
由(1)得f(x)=
1
2
-x=2x
∴函数g(x)=
f(x)-1
f(x)+1
=
2x-1
2x+1

则g(-x)=
2-x-1
2-x+1
=
1-2x
1+2x
=-
2x-1
2x+1
=-g(x)
∴函数g(x)为奇函数
点评:本题考查的知识点是指数函数的图象和性质,函数奇偶性的判断,是函数图象和性质的简单综合应用,难度不大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,设t=logax+logxa.
(Ⅰ)当x∈(1,a)∪(a,+∞)时,将f(x)表示成t的函数h(t),并探究函数h(t)是否有极值;
(Ⅱ)当k=4时,若对?x1∈(1,+∞),?x2∈[1,2],使f(x1)≤g(x2),试求实数b的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
k+1x
(k<0),求使得f(x+k)>1成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖二模)给出以下五个命题:
①命题“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函数f(x)=k•cosx的图象经过点P(
π
3
,1),则函数图象上过点P的切线斜率等于-
3

③a=1是直线y=ax+1和直线y=(a-2)x-1垂直的充要条件.
④函数f(x)=(
1
2
)x-x
1
3
在区间(0,1)上存在零点.
⑤已知向量
a
=(1,-2)
与向量
b
=(1,m)
的夹角为锐角,那么实数m的取值范围是(-∞,
1
2

其中正确命题的序号是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(已知函数f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,设t=logax+logxa.
(Ⅰ)当x∈(1,a)∪(a,+∞)时,试将f(x)表示成t的函数h(t),并探究函数h(t)是否有极值;
(Ⅱ)当k=4时,若对任意的x1∈(1,+∞),存在x2∈[1,2],使f(x1)≤g(x2),试求实数b的取值范围..

查看答案和解析>>

同步练习册答案