精英家教网 > 高中数学 > 题目详情
7.若将函数$f(x)=\sqrt{3}sin2x+cos2x$的图象上的各个点向左平移n(n>0)个单位长度,得到的图象关于y轴对称,则n的最小正数为(  )
A.$\frac{5π}{6}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

分析 将函数利用辅助角公式化简,根据三角函数平移变换后,关于y轴对称建立关系,求解n的最小正数.

解答 解:函数$f(x)=\sqrt{3}sin2x+cos2x$,
化简f(x)=2sin(2x+$\frac{π}{6}$),向左平移n(n>0)可得:2sin[2(x+n)+$\frac{π}{6}$]=2sin(2x+2n+$\frac{π}{6}$),
由题意:∵2sin(2x+2n+$\frac{π}{6}$)关于y轴对称,
则有:2n+$\frac{π}{6}$=kπ$+\frac{π}{2}$(k∈Z)
又∵n>0
当k=0时,n=$\frac{π}{6}$,满足题意,
故选:B.

点评 本题考查了三角函数的化简能力和平移.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列各组命题中,满足“p或q为真”,且“非p为真”的是(  )
A.p:0=∅;q:0∈∅
B.p:在△ABC中,若cos2A=cos2B,则A=B;q:y=sinx在第一象限是增函数
C.p:a+b≥2$\sqrt{ab}$(a,b∈R);q:不等式|x|>x的解集为(-∞,0)
D.p:圆(x-1)2+(y-2)2=1的面积被直线x=1平分;q:椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的离心率为e=$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,M、N分别是四面体OABC的边OA,BC的中点,$\overrightarrow{MP}=3\overrightarrow{PN}$,若$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}+z\overrightarrow{OC}$,则x、y、z的值分别为(  )
A.$\frac{1}{6}$,$\frac{1}{3}$,$\frac{1}{3}$B.$\frac{1}{3}$,$\frac{1}{6}$,$\frac{1}{6}$C.$\frac{1}{8}$,$\frac{3}{8}$,$\frac{3}{8}$D.$\frac{3}{8}$,$\frac{1}{8}$,$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a,b是非零实数,f(x)=ebx-ax,若对任意的,x∈R,f(x)≥1恒成立,则$\frac{b}{a}$=(  )
A.2B.ln2C.1D.$\root{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=lg (2-x)的单调递减区间是(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数y=f(x)在R上有定义,对于任一给定的正数p,定义函数${f_p}(x)=\left\{\begin{array}{l}f(x),f(x)≤p\\ p,f(x)>p\end{array}\right.$,则称函数fp(x)为f(x)的“p界函数”,若给定函数f(x)=x2-2x-1,p=2,则下列结论不成立的是:②.
①fp[f(0)]=f[fp(0)];       ②fp[f(1)]=f[fp(1)];
③fp[fp(2)]=f[f(2)];       ④fp[fp(3)]=f[f(3)].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设$a={log_{\frac{1}{3}}}\frac{1}{2},b={log_{\frac{1}{3}}}\frac{2}{3},c={log_3}1$,则a,b,c大小关系是a>b>c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式x2+x-2<0的解集为(  )
A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(-2,1)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.△ABC中,$B=\frac{3π}{4},BA=3\sqrt{2},BC=3$,点D在边AC上,且DA=DB,求DB的长.

查看答案和解析>>

同步练习册答案