精英家教网 > 高中数学 > 题目详情
11.若实数x,y满足$\left\{\begin{array}{l}{x+y-2>0}\\{y-x-1<0}\\{x≤1}\end{array}\right.$,设u=x+2y,v=2x+y,则$\frac{u}{v}$的最大值为(  )
A.1B.$\frac{5}{4}$C.$\frac{7}{5}$D.2

分析 作出不等式组对应的平面区域,利用分式的性质转化为直线斜率,利用数形结合进行求解即可

解答 解:画出不等式组$\left\{\begin{array}{l}{x+y-2>0}\\{y-x-1<0}\\{x≤1}\end{array}\right.$,所表示的可行域,
如图所示,

则目标函数$\frac{u}{v}$=$\frac{x+2y}{2x+y}$=$\frac{1+2•\frac{y}{x}}{2+\frac{y}{x}}$,
令t=$\frac{y}{x}$,则t表示可行域内点P(x,y)与原点的斜率的取值,
当取可行域内点A($\frac{1}{2}$,$\frac{3}{2}$)时,t取得最大值,此时最大值为t=3;
当取可行域内点B(1,1)时,t取得最小值,此时最小值为t=1,
此时可得,
当t=3时,目标函数$\frac{u}{v}$有最大值,此时最大值为$\frac{1+2×3}{2+3}$=$\frac{7}{5}$;
故选C.

点评 本题主要考查线性规划的应用,根据分式的性质,转化为与斜率有关的问题是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.如图是棱长为1的正方体的平面展开图,则在这个正方体中,以下结论错误的是(  )
A.点M到AB的距离为$\frac{{\sqrt{2}}}{2}$B.AB与EF所成角是90°
C.三棱锥C-DNE的体积是$\frac{1}{6}$D.EF与MC是异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:“x∈R时,都有x2-x+$\frac{1}{4}$<0”;命题q:“存在x∈R,使sinx+cosx=$\sqrt{2}$成立”.则下列判断正确的是(  )
A.p∨q为假命题B.p∧q为真命题C.¬p∧q为真命题D.¬p∨¬q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校高一年级某班开展数学活动,小李和小军合作用一副三角板测量学校的旗杆,小李站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小李和小军相距(BD)6米,小李的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(理科做)如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,点D是AB的中点.
求证:
(1)AC⊥BC1
(2)AC1∥平面B1CD.
(3)若AC=BC=$\frac{1}{2}$CC1,求直线CC1与平面ABC1所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=x2-ax-1在区间(-$\frac{1}{2}$,$\frac{1}{2}$)上有零点,则实数a的取值范围是(  )
A.($\frac{3}{2}$,+∞)B.(-∞,-$\frac{3}{2}$)C.(-∞,-$\frac{3}{2}$)∪($\frac{3}{2}$,+∞)D.(-$\frac{3}{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=ax-3+bsinx+x2+8(ab≠0),且f(-2)=3,则f(2)=21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁UB)等于(  )
A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足,线段PD中点为M,当点P在圆上运动时,点M到直线l:x-y+1=0距离最大值为(  )
A.$\frac{{\sqrt{10}+\sqrt{2}}}{2}$B.$\frac{{\sqrt{10}-\sqrt{2}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步练习册答案