精英家教网 > 高中数学 > 题目详情
10.有下列命题:①3$\sqrt{2}$∉{x|x≤$\sqrt{17}$};②$\sqrt{3}$∈Q;③0∈N;④0∈∅,其的正确的个数为(  )
A.4个B.3个C.2个D.1个

分析 利用元素与集合之间的关系、实数的性质即可判断出结论.

解答 解:①∵$3\sqrt{2}$=$\sqrt{18}$$>\sqrt{17}$,∴3$\sqrt{2}$∉{x|x≤$\sqrt{17}$},因此①正确;
②$\sqrt{3}$∉Q,因此②不正确;
③0∈N,正确;
④0∉∅,因此④不正确.
其的正确的个数为2.
故选:C.

点评 本题考查了元素与集合之间的关系、实数的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.双曲线4x2-$\frac{{y}^{2}}{9}$=1的渐近线方程是y=±6x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知tanα-cotα=3,求tan2α+cot2α与tan3α-cot3α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)=$\left\{\begin{array}{l}{|x-2|-2(|x|≤1)}\\{\frac{1}{{x}^{2}+1}(|x|>1)}\end{array}\right.$,则f[f($\frac{1}{2}$)]=(  )
A.$\frac{1}{2}$B.$\frac{4}{13}$C.$\frac{25}{41}$D.-$\frac{9}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求值:log28+6•log3.41-4•log55+0.3${\;}^{\frac{1}{2}•lo{{g}_{0.3}}{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C的对边分别是a,b,c,且sinA>sinB>sinC,a2-b2-c2<0,则角A的取值范围是(  )
A.($\frac{π}{2}$,0)B.($\frac{π}{4}$,$\frac{π}{2}$)C.($\frac{π}{3}$,$\frac{π}{2}$)D.(0,$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知P(x,y)是不等式组$\left\{\begin{array}{l}{x+2≥0}\\{x-y+3≥0}\\{2x+y-3≤0}\end{array}\right.$,所表示的平面区域内的一点,A(1,6),O为坐标原点,则$\overrightarrow{OA}$•$\overrightarrow{OP}$的最大值为(  )
A.3B.4C.18D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1,(a>b>0)$,点P是椭圆上任一点,F1,F2是椭圆的上下焦点,若△PF1F2的周长为$4+2\sqrt{2}$且其面积最大值为2;
(1)求椭圆的标准方程;
(2)已知点$A(0,\frac{1}{2})$,求线段|PA|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.以椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的四个顶点为顶点的四边形的四条边与⊙O:x2+y2=1共有6个交点,且这6个点恰好把圆周六等分.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若直线l与⊙O相切,且与椭圆M相交于P,Q两点,求|PQ|的最大值.

查看答案和解析>>

同步练习册答案