2£®Ä³µçÊǪ́¾ÙÐÐÒ»¸ö±ÈÈüÀàÐ͵ÄÓéÀÖ½ÚÄ¿£¬A¡¢BÁ½¶Ó¸÷ÓÐÁùÃûÑ¡ÊÖ²ÎÈü£¬½«ËûÃÇÊ×ÂֵıÈÈü³É¼¨×÷ΪÑù±¾Êý¾Ý£¬»æÖƳɾ¥Ò¶Í¼ÈçͼËùʾ£¬ÎªÁËÔö¼Ó½ÚÄ¿µÄȤζÐÔ£¬Ö÷³ÖÈ˹ÊÒ⽫A¶ÓµÚÁùλѡÊֵijɼ¨Ã»Óиø³ö£¬²¢ÇÒ¸æÖª´ó¼ÒB¶ÓµÄƽ¾ù·Ö±ÈA¶ÓµÄƽ¾ù·Ö¶à4·Ö£¬Í¬Ê±¹æ¶¨Èç¹ûijλѡÊֵijɼ¨²»ÉÙÓÚ21·Ö£¬Ôò»ñµÃ¡°½ú¼¶¡±£®
£¨1£©¸ù¾Ý¾¥Ò¶Í¼ÖеÄÊý¾Ý£¬Çó³öA¶ÓµÚÁùλѡÊֵijɼ¨£»
£¨2£©Ö÷³ÖÈË´ÓA¶ÓËùÓÐÑ¡Êֳɼ¨ÖÐËæ»ú³é2¸ö£¬ÇóÖÁÉÙÓÐÒ»¸öΪ¡°½ú¼¶¡±µÄ¸ÅÂÊ£»
£¨3£©Ö÷³ÖÈË´ÓA¡¢BÁ½¶ÓËùÓÐÑ¡Êֳɼ¨·Ö±ðËæ»ú³éÈ¡2¸ö£¬¼Ç³éÈ¡µ½¡°½ú¼¶¡±Ñ¡ÊÖµÄ×ÜÈËÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

·ÖÎö £¨1£©ÉèA¶ÓµÚÁùλѡÊֵijɼ¨Îªx£¬ÀûÓþ¥Ò¶Í¼¼°Æ½¾ùÊýµÄ¶¨ÒåÄÜÇó³öA¶ÓµÚÁùλѡÊֵijɼ¨£®
£¨2£©A¶Ó6λѡÊÖÖÐÓÐ2ÈË»ñµÃ¡°½ú¼¶¡±£®Ö÷³ÖÈË´ÓA¶ÓËùÓÐÑ¡Êֳɼ¨ÖÐËæ»ú³é2¸ö£¬ÏÈÇó³ö»ù±¾Ê¼þ×ÜÊý£¬ÔÙÓɶÔÁ¢Ê¼þ¸ÅÂʼÆË㹫ʽÄÜÇó³öÖÁÉÙÓÐÒ»¸öΪ¡°½ú¼¶¡±µÄ¸ÅÂÊ£®
£¨3£©ÓÉÌâÒâA¶Ó6λѡÊÖÖÐÓÐ2ÈË»ñµÃ¡°½ú¼¶¡±£¬B¶Ó6λѡÊÖÖÐÓÐ4ÈË»ñµÃ¡°½ú¼¶¡±£¬Ôò¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

½â´ð ½â£º£¨1£©ÉèA¶ÓµÚÁùλѡÊֵijɼ¨Îªx£¬
ÓÉÌâÒâµÃ£º$\frac{1}{6}$£¨9+11+13+24+31+x=$\frac{1}{6}$£¨11+12+21+25+27+36£©£¬
½âµÃx=20£¬
¡àA¶ÓµÚÁùλѡÊֵijɼ¨Îª20£®
£¨2£©ÓÉ£¨1£©ÖªA¶Ó6λѡÊÖÖгɼ¨²»ÉÙÓÚ21·ÖµÄÓÐ2룬¼´A¶Ó6λѡÊÖÖÐÓÐ2ÈË»ñµÃ¡°½ú¼¶¡±£®
Ö÷³ÖÈË´ÓA¶ÓËùÓÐÑ¡Êֳɼ¨ÖÐËæ»ú³é2¸ö£¬»ù±¾Ê¼þ×ÜÊýn=${C}_{6}^{2}$=15£¬
ÖÁÉÙÓÐÒ»¸öΪ¡°½ú¼¶¡±µÄ¸ÅÂÊp=1-$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{2}{5}$£®
£¨3£©ÓÉÌâÒâA¶Ó6λѡÊÖÖÐÓÐ2ÈË»ñµÃ¡°½ú¼¶¡±£¬B¶Ó6λѡÊÖÖÐÓÐ4ÈË»ñµÃ¡°½ú¼¶¡±£¬
Ö÷³ÖÈË´ÓA¡¢BÁ½¶ÓËùÓÐÑ¡Êֳɼ¨·Ö±ðËæ»ú³éÈ¡2¸ö£¬¼Ç³éÈ¡µ½¡°½ú¼¶¡±Ñ¡ÊÖµÄ×ÜÈËÊýΪ¦Î£¬
Ôò¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£¬
P£¨¦Î=0£©=$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}¡Á\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{6}{225}$£¬
P£¨¦Î=1£©=$\frac{{C}_{4}^{1}{C}_{2}^{1}}{{C}_{6}^{2}}¡Á\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$+$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}¡Á\frac{{C}_{4}^{1}{C}_{2}^{1}}{{C}_{6}^{2}}$=$\frac{56}{225}$£¬
P£¨¦Î=2£©=$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}¡Á\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$+$\frac{{C}_{4}^{1}{C}_{2}^{1}}{{C}_{6}^{2}}¡Á\frac{{C}_{4}^{1}{C}_{2}^{1}}{{C}_{6}^{2}}$+$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}¡Á\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{101}{225}$£¬
P£¨¦Î=3£©=$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}¡Á\frac{{C}_{4}^{1}{C}_{2}^{1}}{{C}_{6}^{2}}$+$\frac{{C}_{4}^{1}{C}_{2}^{1}}{{C}_{6}^{2}}¡Á\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{56}{225}$£¬
P£¨¦Î=4£©=$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}¡Á\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{6}{225}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º

 ¦Î 0 1 2 3 4
 P $\frac{6}{225}$ $\frac{56}{225}$ $\frac{101}{225}$ $\frac{56}{225}$ $\frac{6}{225}$
E¦Î=$0¡Á\frac{6}{225}+1¡Á\frac{56}{225}+2¡Á\frac{101}{225}$+3¡Á$\frac{56}{225}$+4¡Á$\frac{6}{225}$=2£®

µãÆÀ ±¾Ì⿼²é¾¥Ò¶Í¼µÄÓ¦Ó㬿¼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼Áм°ÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÅÅÁÐ×éºÏ֪ʶµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ä³ÍâÓïѧУӢÓï°àÓÐA1¡¢A2Á½Î»Í¬Ñ§£¬ÈÕÓï°àÓÐB1¡¢B2¡¢B3Èýλͬѧ£¬¹²5È˱¨Ãû°ÂÔË»áÖ¾Ô¸Õߣ¬ÏÖ´ÓÖÐÑ¡³ö¶®Ó¢Óï¡¢ÈÕÓïµÄÖ¾Ô¸Õ߸÷1ÈË£¬×é³ÉÒ»¸öС×飮
£¨1£©Ð´³öËùÓпÉÄܵĽá¹û£»
£¨2£©ÇóA2±»Ñ¡ÖеĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ò»¸öºÐ×ÓÀï×°ÓбêºÅΪ1£¬2£¬3£¬4£¬5£¬6£¬7£¬8£¬9µÄ9ÕűêÇ©£¬Ëæ»úµØÑ¡È¡7ÕűêÇ©£¬ÔòÈ¡³öµÄ7ÕűêÇ©µÄ±êºÅµÄƽ¾ùÊýÊÇ5µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{9}$B£®$\frac{2}{9}$C£®$\frac{2}{3}$D£®$\frac{8}{9}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªA£¨0£¬1£©£¬B£¨-$\sqrt{3}$£¬0£©£¬C£¨-$\sqrt{3}$£¬2£©£¬Ôò¡÷ABCÍâ½ÓÔ²µÄÔ²Ðĵ½Ö±Ïßy=-$\sqrt{3}$xµÄ¾àÀëΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Ä³±ãЯʽµÆ¾ß³§µÄ¼ìÑéÊÒ£¬Òª¼ì²é¸Ã³§Éú²úµÄijһÅú´Î²úÆ·ÔÚʹÓÃʱµÄ°²È«ÐÔ£®¼ì²éÈËÔ±´ÓÖÐËæ»ú³éÈ¡5¼þ£¬Í¨¹ý¶ÔÆä¼ÓÒÔ²»Í¬µÄµçѹ£¨µ¥Î»£º·üÌØ£©²âµÃÏàÓ¦µçÁ÷£¨µ¥Î»£º°²Åࣩ£¬Êý¾Ý¼ûÏÂ±í£º
²úÆ·±àºÅ ¢Ù ¢Ú ¢Û ¢Ü ¢Ý
µçѹ£¨x£©1015202530
µçÁ÷£¨y£©0.60.81.41.21.5
£¨1£©ÊÔ¹À¼ÆÈç¶Ô¸ÃÅú´Îij¼þ²úÆ·¼ÓÒÔ110·üµçѹ£¬²úÉúµÄµçÁ÷ÊǶàÉÙ£¿
£¨2£©ÒÀ¾ÝÆäÐÐÒµ±ê×¼£¬¸ÃÀà²úÆ·µç×èÔÚ[18£¬22]ÄÚΪºÏ¸ñÆ·£®ÒÔÉÏÊö³éÑùÖеõ½µÄƵÂÊΪºÏ¸ñÆ·¸ÅÂÊ£¬ÔÙ´Ó¸ÃÅú´Î²úÆ·ÖÐËæ»ú³éÈ¡5¼þ£¬¼ÇËæ»ú±äÁ¿X±íʾÆäÖкϸñÆ·¸öÊý£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁС¢ÆÚÍûºÍ·½²î£®
£¨¸½£º»Ø¹é·½³Ì£º$\hat y=bx+a$£¬ÆäÖУº$b=\frac{{\sum_{i=1}^n{£¨{x_i}{y_i}£©-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}£¬a=\overline y-b\overline x$
²Î¿¼Êý¾Ý£º$\overline{x}=20$£¬$\overline{y}$=1.1£¬$\sum_{i=1}^5{{x_i}{y_i}}$=121£¬$\sum_{i=1}^5{x_i^2}$=2250£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¼×¡¢ÒÒÁ½¶Ó²Î¼ÓÌý¸è²Â¸èÃûÓÎÏ·£¬Ã¿¶Ó3ÈË£®Ëæ»ú²¥·ÅÒ»Ê׸èÇú£¬²ÎÈüÕß¿ªÊ¼ÇÀ´ð£¬Ã¿ÈËÖ»ÓÐÒ»´ÎÇÀ´ð»ú»á£¨Ã¿ÈËÇÀ´ð»ú»á¾ùµÈ£©£¬´ð¶ÔÕßΪ±¾¶ÓÓ®µÃÒ»·Ö£¬´ð´íµÃÁã·Ö£®¼ÙÉè¼×¶ÓÖÐÿÈË´ð¶ÔµÄ¸ÅÂʾùΪ$\frac{2}{3}$£¬ÒÒ¶ÓÖÐ3ÈË´ð¶ÔµÄ¸ÅÂÊ·Ö±ðΪ$\frac{2}{3}$£¬$\frac{1}{3}$£¬$\frac{1}{2}$£¬ÇÒ¸÷È˻شðÕýÈ·Óë·ñÏ໥֮¼äûÓÐÓ°Ï죮
£¨¢ñ£©Èô±ÈÈüÇ°Ëæ»ú´ÓÁ½¶ÓµÄ6¸öÑ¡ÊÖÖгéÈ¡Á½ÃûÑ¡ÊÖ½øÐÐʾ·¶£¬Çó³éµ½µÄÁ½ÃûÑ¡ÊÖÔÚͬһ¸ö¶ÓµÄ¸ÅÂÊ£»
£¨¢ò£©Óæαíʾ¼×¶ÓµÄ×ܵ÷֣¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨¢ó£©ÇóÁ½¶ÓµÃ·ÖÖ®ºÍ´óÓÚ4µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®½«Ò»¿Å÷»×ÓÁ¬ÐøÅ×ÖÀ2´Î£¬ÏòÉϵĵãÊý·Ö±ðΪm£¬n£¬ÔòµãP£¨m£¬n£©ÔÚÖ±Ïßy=$\frac{1}{2}$xÏ·½µÄ¸ÅÂÊΪ$\frac{1}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÈôD¦Î=1£¬ÔòD£¨¦Î-D¦Î£©=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Ä³ÖÐѧΪµ÷²éÔÚУѧÉúµÄÊÓÁ¦Çé¿ö£¬Äâ²ÉÓ÷ֲã³éÑùµÄ·½·¨£¬´Ó¸ÃУÈý¸öÄê¼¶Öгéȡһ¸öÈÝÁ¿Îª30µÄÑù±¾½øÐе÷²é£¬ÒÑÖª¸ÃУ¸ßÒ»¡¢¸ß¶þ¡¢¸ßÈýÄê¼¶µÄѧÉúÈËÊýÖ®±ÈΪ4£º5£º6£¬ÔòÓ¦´Ó¸ßÒ»Ä꼶ѧÉúÖгéÈ¡8ÃûѧÉú£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸