精英家教网 > 高中数学 > 题目详情
2.定义min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,b≤a}\end{array}\right.$,设函数f(x)=min{2$\sqrt{x}$,|x-2|},若动直线y=m与函数y=f(x)的图象有三个交点,它们的横坐标分别为x1,x2,x3,则x1+x2+x3的取值范围为$(4,8-2\sqrt{3})$.

分析 根据函数f(x)的定义作出函数f(x)的图象,根据函数图象有三个交点,确定三个交点之间的关系即可得到结论.

解答 解:由2$\sqrt{x}$=|x-2|,
平方得4x=x2-4x+4,
即x2-8x+4=0,
解得x=4+2$\sqrt{3}$或x=4-2$\sqrt{3}$,
设x1<x2<x3
作出函数f(x)的图象如图:
则0<x1<4-2$\sqrt{3}$,x2与x3,关于x=2对称,
则x2+x3=4,
则x1+x2+x3=x1+4,
∵0<x1<4-2$\sqrt{3}$,
∴4<4+x1<8-2$\sqrt{3}$,
即x1+x2+x3的取值范围为$(4,8-2\sqrt{3})$,
故答案为:$(4,8-2\sqrt{3})$

点评 本题主要考查函数与方程的应用,根据定义作出函数的图象,结合函数的对称性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.极坐标系与直角坐标系xOy有相同的长度单位,以原点o为极点,以x轴正半轴为极轴.曲线C的极坐标方程为 ρ2=4,已知倾斜角为$\frac{π}{4}$的直线?经过点P(1,1).
(Ⅰ)写出直线?的参数方程;曲线C的直角坐标方程;
(Ⅱ)设直线?与曲线C相交于A,B两点,求$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.以直角坐标系的原点为极点x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.则曲线C1:ρ2-2ρcosθ-1=0上的点到曲线C2:$\left\{\begin{array}{l}{x=3-t}\\{y=1+t}\end{array}\right.$(t为参数)上的点的最短距离为(  )
A.$2\sqrt{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合$A=\left\{{\left.x\right|{2^{{x^2}-x-2}}≤1}\right\}$,B={x|y=ln(1-x)},则A∩∁RB=(  )
A.(1,2)B.[1,2]C.[-1,1)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知四边形ABCD满足AD∥BC,BA=AD=DC=$\frac{1}{2}$BC=a,E是BC的中点,将△BAE沿AE折起到△B1AE的位置,使平面B1AE⊥平面AECD,F为B1D的中点.
(1)证明:B1E∥平面ACF;
(2)求平面ADB1与平面ECB1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(Ⅰ)已知正数a1、a2满足a1+a2=1,求证:a1log2a1+a2log2a2≥-1;
(Ⅱ)若正数a1、a2、a3、a4满足a1+a2+a3+a4=1,求证:a1log2a1+a2log2a2+a3log2a3+a4log2a4≥-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象
(1)写出函数y=g(x)的解析式;
(2)求不等式2f(x)+g(x)≥0的解集A;
(3)当x∈A时,总有f(x)+g(x)≥m成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)对定义域R内的任意x都有f(x)=f(4-x),且当x≠2时导函数满足xf′(x)>2f′(x),若2<a<4,则(  )
A.f(2a)<f(3)<f(log2a)B.f(3)<f(log2a)<f(2aC.f(log2a)<f(3)<f(2aD.f(log2a)<f(2a)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}为递增等比数列,其前n项和为Sn.若a1=1,2an+1+2an-1=5an(n≥2),则S5=(  )
A.$\frac{31}{16}$B.$\frac{31}{32}$C.31D.15

查看答案和解析>>

同步练习册答案