精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象
(1)写出函数y=g(x)的解析式;
(2)求不等式2f(x)+g(x)≥0的解集A;
(3)当x∈A时,总有f(x)+g(x)≥m成立,求m的取值范围.

分析 (1)把函数称问题转化为点的对称:P(x,y)在函数y=g(x)的图象上,则Q(-x,-y)在函数f(x)的图象,y=g(x),得出-y=f(-x),y=-log(1-x),即可求解g(x)的图象.
(2)2loga(x+1)-loga(1-x)≥0,利用对数函数的单调性求解即可
(3)分离参数得出:m≤loga$\frac{1+x}{1-x}$恒成立,转化为求函数y=loga$\frac{1+x}{1-x}$在[0,1)的值域问题.

解答 解:(1)∵函数f(x)=loga(x+1)(a>1),
函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.
∴设P(x,y)在函数y=g(x)的图象上,则Q(-x,-y)在函数f(x)的图象,y=g(x)
∴-y=f(-x),y=-log(1-x),
g(x)=-loga(1-x)
(2)2loga(x+1)-loga(1-x)≥0,a>1,
$\left\{\begin{array}{l}{lo{g}_{a}\frac{(1+x)^{2}}{1-x}≥0}\\{-1<x<1}\end{array}\right.$,得解集[0,1)
(3)loga(x+1)-loga(1-x)≥m恒成立
即m≤loga$\frac{1+x}{1-x}$恒成立,函数y=loga$\frac{1+x}{1-x}$在[0,1)上值域[0,+∞)
所以m≤0.

点评 本题考查了对数函数的单调性,不等式,分离参数问题,考查了学生的综合解决问的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)的定义域为[-1,4],部分对应值如表,
x-10234
f(x)12020
f(x)的导函数y=f′(x)的图象如图所示.当1<a<2时,函数y=f(x)-a的零点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=lnx,$\begin{array}{l}{\;}{g(x)=({2-a})({x-1})-2f(x)}\end{array}$.
(Ⅰ)当a=1时,求函数g(x)的单调区间;
(Ⅱ)若对任意$x∈({0,\frac{1}{2}}),g(x)>0$恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.定义min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,b≤a}\end{array}\right.$,设函数f(x)=min{2$\sqrt{x}$,|x-2|},若动直线y=m与函数y=f(x)的图象有三个交点,它们的横坐标分别为x1,x2,x3,则x1+x2+x3的取值范围为$(4,8-2\sqrt{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=θ,且θ∈(0,π)(如图2所示).

(Ⅰ)求证:平面ABD⊥平面BDC;
(Ⅱ)若θ=90°,当BD的长为多少时,三棱锥A-BCD的体积最大;并求出其体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥E-ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F为CE的中点,
(1)求证:AE∥平面BDF;
(2)求证:平面BDF⊥平面ACE;
(3)2AE=EB,在线段AE上找一点P,使得二面角P-DB-F的余弦值为$\frac{{\sqrt{10}}}{10}$,求AP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设复数$z=\frac{2}{-1-i}$,则$z•\overline z$=(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示,在正方形OABC中任取一点,则该点落在阴影部分的概率为(  )
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{1}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$x2-ax+(a-1)lnx(a>1).
(Ⅰ) 讨论函数f(x)的单调性;
(Ⅱ) 若a=2,数列{an}满足an+1=f(an).
(1)若首项a1=10,证明数列{an}为递增数列;
(2)若首项为正整数,且数列{an}为递增数列,求首项a1的最小值.

查看答案和解析>>

同步练习册答案