精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知抛物线C)的焦点F在直线上,平行于x轴的两条直线分别交抛物线CAB两点,交该抛物线的准线于DE两点.

1)求抛物线C的方程;

2)若F在线段上,P的中点,证明:.

【答案】(1);(2)见解析

【解析】

1)根据抛物线的焦点在直线上,可求得的值,从而求得抛物线的方程;

2)法一:设直线的方程分别为,可得的坐标,进而可得直线的方程,根据在直线上,可得,再分别求得,即可得证;法二:设,则,根据直线的斜率不为0,设出直线的方程为,联立直线和抛物线的方程,结合韦达定理,分别求出,化简,即可得证.

1)抛物线C的焦点坐标为,且该点在直线上,

所以,解得,故所求抛物线C的方程为

2)法一:由点F在线段上,可设直线的方程分别为,则.

∴直线的方程为,即.

又点在线段上,∴.

P的中点,∴

.

由于不重合,所以

法二:设,则

当直线的斜率为0时,不符合题意,故可设直线的方程为

联立直线和抛物线的方程,得

为该方程两根,所以.

由于不重合,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数,若存在,使,则称是函数的一对“雷点”.已知,若函数恰有一个“雷点”,则实数的取值范围为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,底面ABCHPC的中点,MAH的中点.

1)求PM与平面AHB成角的正弦值;

2)在线段PB上是否存在点N使得平面ABC.若存在,请说明点N的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据有关资料预测,某市下月1—14日的空气质量指数趋势如下图所示.,根据已知折线图,解答下面的问题:

1)求污染指数的众数及前五天污染指数的平均值;(保留整数)

2)为了更好发挥空气质量监测服务人民的目的,监测部门在发布空气质量指数的同时,也给出了出行建议,比如空气污染指数大于150时需要戴口罩,超过200时建议减少外出活动等等.如果某人事先没有注意到空气质量预报,而在1—12号这12天中随机选定一天,欲在接下来的两天中(不含选定当天)进行外出活动.求其外出活动的两天期间.

①恰好都遭遇重度及以上污染天气的概率;

②至少有一天能避开重度及以上污染天气的概率.

附:空气质量等级参考表:

等级

轻度污染

中度污染

重度污染

严重污染

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在海岸线一侧有一休闲游乐场,游乐场的前一部分边界为曲线段,该曲线段是函数的图象,图象的最高点为.边界的中间部分为长1千米的直线段,且.游乐场的后部分边界是以为圆心的一段圆弧.

(1)求曲线段的函数表达式;

(2)如图,在扇形区域内建一个平行四边形休闲区,平行四边形的一边在海岸线上,一边在半径上,另外一个顶点在圆弧上,且,求平行四边形休闲区面积的最大值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数).

1)求的交点的直角坐标;

2)求上的点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.

(1) 求证:平面平面

(2) 求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解居民的家庭收入情况,某社区组织工作人员从该社区的居民中随机抽取了100户家庭进行问卷调查.经调查发现,这些家庭的月收入在3000元到10000元之间,根据统计数据作出如图所示的频率分布直方图:

1)经统计发现,该社区居民的家庭月收入(单位:百元)近似地服从正态分布,其中近似为样本平均数.落在区间的左侧,则可认为该家庭属收入较低家庭,社区将联系该家庭,咨询收入过低的原因,并采取相应措施为该家庭提供创收途径.若该社区家庭月收入为4100元,试判断家庭是否属于收入较低家庭,并说明原因;

2)将样本的频率视为总体的概率.

①从该社区所有家庭中随机抽取户家庭,若这户家庭月收入均低于8000元的概率不小于50%,求的最大值;

②在①的条件下,某生活超市赞助了该社区的这次调查活动,并为这次参与调查的家庭制定了赠送购物卡的活动,赠送方式为:家庭月收入低于的获赠两次随机购物卡,家庭月收入不低于的获赠一次随机购物卡;每次赠送的购物卡金额及对应的概率分别为:

赠送购物卡金额(单位:元)

100

200

300

概率

家庭预期获得的购物卡金额为多少元?(结果保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,求曲线处的切线方程;

(Ⅱ)求函数上的最小值;

(Ⅲ)若函数,当时, 的最大值为,求证: .

查看答案和解析>>

同步练习册答案