精英家教网 > 高中数学 > 题目详情
9.在圆x2+y2=4内随机取一点P(x0,y0),则${({x_0}-1)^2}+y_0^2≤1$的概率为$\frac{1}{4}$.

分析 分别求出两圆表示的平面面积,利用几何概型计算即可.

解答 解:圆x2+y2=4内点M对应的图形面积为S=πr2=4π,
${({x_0}-1)^2}+y_0^2≤1$表示的区域面积为S′=πr′2=π,
由几何概型的概率公式计算点P落在M内的概率为:
P=$\frac{π}{4π}$=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查了几何概型的概率公式计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{\begin{array}{l}1+{log_5}x,x≥1\\ 2x-1,x<1\end{array}\right.$若f[f(0)+m]=2,则m等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式|2x+3|<1的解集为(  )
A.(-2,-1)B.(-∞,-2)∪(-1,+∞)C.(1,2)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx+x2-ax,a∈R
(1)若f(x)在P(x0,y0)(x∈[$\frac{\sqrt{2}}{2},+∞$))处的切线方程为y=-2,求实数a的值;
(2)若x1,x2(x1<x2)是函数f(x)的两个零点,f′(x)是函数f(x)的导函数,证明:f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线:bx+ay=0与直线:x-2y+2=0垂直,则二次函数f(x)=ax2-bx+a的说法正确的是(  )
A.f(x)开口方向朝上B.f(x)的对称轴为x=1C.f(x)在(-∞,-1)上递增D.f(x)在(-∞,-1)上递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点M(-1,0),N(1,0),曲线E上任意一点到M的距离均是到点N距离的$\sqrt{3}$倍.
(1)求曲线E的方程;
(2)已知m≠0,设直线l1:x-my-1=0交曲线E于A,C两点,直线l2:mx+y-m=0交曲线E于B,D两点,C,D两点均在x轴下方,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知P为抛物线y2=4x上的动点,直线l1:x=-1,直线l2:x+y+3=0,则P点到直线l1,l2距离之和的最小值为(  )
A.2$\sqrt{2}$B.4C.$\sqrt{2}$D.$\frac{3}{2}$$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2klnx,g(x)=x2-2kx(k∈R)
(1)设h(x)=f(x)-g(x),试讨论函数h(x)的单调性
(2)设k>0,若函数y=f(x)的图象与y=g(x)的图象在区间(0,+∞)上有唯一交点,试求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=$\frac{1}{2}$x2+ex-xex
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案