分析 (1)设出点坐标,由题目条件进行计算即可;
(2)四边形的面积:S=$\frac{1}{2}AC•BD$,取AC的中点P,BD的中点Q,连结EP、EQ,求出AC2+BD2=8,利用基本不等式可得结论.
解答 解:(1)设曲线E上任意一点坐标为(x,y),
由题意,$\sqrt{(x+1)^{2}+{y}^{2}}$=$\sqrt{3}•\sqrt{(x-1)^{2}+{y}^{2}}$,-----(2分)
整理得x2+y2-4x+1=0,即(x-2)2+y2=3为所求.--…(5分)
(2)由题意可知l1⊥l2,且两条直线均恒过点N(1,0)…(7分)
则四边形的面积:S=$\frac{1}{2}AC•BD$…(8分)
取AC的中点P,BD的中点Q,连结EP、EQ,
EP2=3-$\frac{1}{4}$AC2,EQ2=3-$\frac{1}{4}$BD2,
又可知四边形NPEQ为矩形,所以有EP2+EQ2=EN2=4
整理得:AC2+BD2=8…(10分)
故S=$\frac{1}{2}AC•BD$≤$\frac{1}{2}•\frac{A{C}^{2}+B{D}^{2}}{2}$=2
当AC=BD,即m=1时,即面积最大值为2…(12分)![]()
点评 本题考查求解轨迹方程的一般方法,考查面积的计算,考查基本不等式的运用,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 实数t有最小值1 | B. | 实数t有最大值1 | C. | 实数t有最小值$\frac{1}{2}$ | D. | 实数t有最大值$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${e^{\frac{1}{e}+2}}$ | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | π | C. | $\frac{π}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,$\frac{17}{4}$] | B. | (2,$\frac{17}{4}$]∪(-∞,-2) | C. | (2,8) | D. | (-∞,-2)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com