精英家教网 > 高中数学 > 题目详情
13.(1)命题p:“?x∈[1,2],x2-a≥0”,命题q:“?x0∈R,x02+2ax0+2-a=0”,若“p且q”为假命题,求实数a的取值范围.
(2)已知p:|1-$\frac{x-1}{3}$|≤2,q:x2-2x+1-m2≤0(m>0),若p是q的必要而不充分必要条件,求实数m的取值范围.

分析 (1)先求出命题p,q同时为真命题的条件,然后利用补集思想求“p且q”为假命题的条件即可.
(2)通过求解不等式,求出p,q,的解,利用必要而不充分条件,列出不等式组,求解即可.

解答 解:(1)若p是真命题.则a≤x2
∵x∈[1,2],1≤x2≤4,
∴a≤1,即p:a≤1.
若q为真命题,则方程x2+2ax+2-a=0有实根,
∴△=4a2-4(2-a)≥0,
即a≥1或a≤-2,
即q:a≥1或a≤-2.
 p真q真时,$\left\{\begin{array}{l}{a≤1}\\{a≥1或a≤-2}\end{array}\right.$,
∴a≤-2或a=1.
若“p且q”为假命题,即a>-2且a≠1.
故实数a的取值范围是:(-2,1)∪(1,+∞)a>0,
(2):由|1-$\frac{x-1}{3}$|≤2得-2≤x≤10.
由x2-2x+1-m2≤0得-m+1≤x≤m+1,
若p是q的必要不充分条件即“q⇒p”?{x|1-m≤x≤1+m}?{x|-2≤x≤10},$\left\{\begin{array}{l}{1-m>-2}\\{1+m≤10}\end{array}\right.$
或$\left\{\begin{array}{l}{1-m≥-2}\\{1+m<10}\end{array}\right.$,
∴m≤3,又m>0,
所以实数m的取值范围是(0,3].

点评 本题主要考查复合命题与简单命题的真假关系,利用条件先求出p,q同时为真命题的条件,然后利用补集思想求“p且q”为假命题的条件是解决本题的关键.并考查充要条件的应用,不等式的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知点M(-1,0),N(1,0),曲线E上任意一点到M的距离均是到点N距离的$\sqrt{3}$倍.
(1)求曲线E的方程;
(2)已知m≠0,设直线l1:x-my-1=0交曲线E于A,C两点,直线l2:mx+y-m=0交曲线E于B,D两点,C,D两点均在x轴下方,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={x||x-2|<1,x∈R},集合B=Z,则A∩B={2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|2<x<4},B={x||x|≥1},则A∩B=(  )
A.(1,+∞)B.(2,4)C.(-∞,-1)∪(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=$\frac{1}{2}$x2+ex-xex
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.log26-log23-3${\;}^{{{log}_3}\frac{1}{2}}}$+(${\frac{1}{4}}$)${\;}^{-\frac{1}{2}}}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+1),x>0}\\{-{x}^{2}-3x,x≤0}\end{array}\right.$,若函数g(x)=f(x)-a有3个零点,则实数a的取值范围是(0,$\frac{9}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用秦九韶算法计算多项式f(x)=10+25x-8x2+x4+6x5+2x6在x=-4时的值时,v3的值为(  )
A.-144B.-36C.-57D.34

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={(x,y)|x2+y2≤4,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为(  )
A.49B.45C.69D.73

查看答案和解析>>

同步练习册答案