精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+1),x>0}\\{-{x}^{2}-3x,x≤0}\end{array}\right.$,若函数g(x)=f(x)-a有3个零点,则实数a的取值范围是(0,$\frac{9}{4}$).

分析 将函数g(x)=f(x)-a有3个零点转化为y=f(x)与y=a有三个交点,在同一坐标系中作出两函数的图象,即可求得实数a的取值范围.

解答 解:∵f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+1),x>0}\\{-{x}^{2}-3x,x≤0}\end{array}\right.$,
∴函数g(x)=f(x)-a有3个零点?
方程f(x)=a有3个根?y=f(x)与y=a有三个交点,
在同一坐标系中作出两函数的图象如下:
由图可知,当0<a<$\frac{9}{4}$时,y=f(x)与y=a有三个交点,即函数g(x)=f(x)-a有3个零点.
故答案为:(0,$\frac{9}{4}$).

点评 本题考查根的存在性及根的个数判断,将函数g(x)=f(x)-a有3个零点转化为y=f(x)与y=a有三个交点是关键,考查等价转化思想与数形结合思想的综合运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数F(x)=xlnx
(1)求这个函数的导数;
(2)求这个函数的图象在点x=e处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果对一切实数x、y,不等式$\frac{y}{4}$-cos2x≥asinx-$\frac{9}{y}$恒成立,则实数a的取值范围是(  )
A.(-∞,$\frac{4}{3}$]B.[3,+∞)C.[-2$\sqrt{2}$,2$\sqrt{2}$]D.[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)命题p:“?x∈[1,2],x2-a≥0”,命题q:“?x0∈R,x02+2ax0+2-a=0”,若“p且q”为假命题,求实数a的取值范围.
(2)已知p:|1-$\frac{x-1}{3}$|≤2,q:x2-2x+1-m2≤0(m>0),若p是q的必要而不充分必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)=$\frac{1}{{{2^x}-1}}$+a关于(0,0)对称.
(1)求a得值;
(2)解不等式f(x)<$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=a-$\frac{2}{{2}^{x}+1}$(a∈R)是奇函数,那么实数a的值等于(  )
A.1B.-1C.0D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以下四个命题中不正确的是 (  )
A.$f(x)=\frac{|x|}{x}$是奇函数B.f(x)=x2,x∈(-3,3]是偶函数
C.f(x)=(x-3)2是非奇非偶函数D.y=x4+x2是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=(x-1)ex-kx2(其中k∈R).
(Ⅰ) 若f(x)>0对x∈(1,+∞)恒成立,求实数k的取值范围;
(Ⅱ) 当k∈($\frac{1}{2}$,1]时,求函数f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,在侧面PBC内,有BE⊥PC于E,且BE=$\frac{{\sqrt{6}}}{3}$a.
(1)求证:PB⊥BC;
(2)试在AB上找一点F,使EF∥平面PAD.

查看答案和解析>>

同步练习册答案