精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=\frac{1}{2}ln(x+\frac{1}{4})$,$g(x)=ln(2x-\frac{1}{2}+t)$,若f(x)≤g(x)在区间[0,1]上恒成立,则(  )
A.实数t有最小值1B.实数t有最大值1C.实数t有最小值$\frac{1}{2}$D.实数t有最大值$\frac{1}{2}$

分析 若对任意的x∈[0,1],有f(x)≤g(x)恒成立,则g(x)-f(x)≥0恒成立,构造函数h(x)=g(x)-f(x),并将恒成立问题转化为最值问题,由题意求出t的范围,可得原函数的导函数在[0,1]上单调递增,求其最小值,由最小值大于等于0求得t有最小值1.

解答 解:若对任意的x∈[0,1],有f(x)≤g(x)恒成立,
则对任意的x∈[0,1],有g(x)-f(x)≥0恒成立,
令h(x)=g(x)-f(x)=$ln(2x-\frac{1}{2}+t)-\frac{1}{2}ln(x+\frac{1}{4})$,x∈[0,1],
则h′(x)=$\frac{2}{2x-\frac{1}{2}+t}-\frac{1}{2x+\frac{1}{2}}$=$\frac{2x+\frac{3}{2}+t}{(2x-\frac{1}{2}+t)(2x+\frac{1}{2})}$,x>max{$-\frac{1}{4}$,$\frac{1}{2}-t$}.
由题意可得$\frac{1}{2}-t≤0$,即t$≥\frac{1}{2}$,再由h′(x)=0,可得x=$-\frac{3}{4}-\frac{t}{2}$≤-1,
则h(x)在[0,1]上单调递增,$h(x)_{min}=h(0)=ln(-\frac{1}{2}+t)-\frac{1}{2}ln\frac{1}{4}≥0$,解得t≥1.
∴实数t有最小值1.
故选:A.

点评 本题考查的知识点是利用导数求闭区间上的函数最值,利用导数研究函数的单调性,熟练掌握导数符号与原函数单调性的关系,是解答的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设$a={(\frac{1}{2})^{0.7}}$,$b={(\frac{1}{2})^{0.8}}$,c=log30.7,则(  )
A.c<b<aB.c<a<bC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|1<x≤5},B={x|log2x≥1},则A∩B=(  )
A.{x|2≤x≤5}B.{x|1<x≤2}C.{x|1<x≤3}D.{x|1<x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=lg(\sqrt{4{x^2}+b}+2x)$,其中b是常数.
(1)若y=f(x)是奇函数,求b的值;
(2)求证:y=f(x)是单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{\begin{array}{l}1+{log_5}x,x≥1\\ 2x-1,x<1\end{array}\right.$若f[f(0)+m]=2,则m等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合$A=\left\{{0,1,{{log}_3}({m^2}+2),{m^2}-3m}\right\}$,设f:x→2x-3是集合C={-1,1,n}到集合B={-5,-1,3}的映射.
(1)若m=5,求A∩C;
(2)若-2∈A,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合M={-1,0,1},N={x|x(x-2)≤0},则M∩N=(  )
A.A{-1,2}B.[-1,2]C.{0,1}D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足Sn=2an-1(n∈N*),{bn}是等差数列,且b1=a1,b4=a3
(1)求数列{an}和{bn}的通项公式;
(2)若cn=$\frac{1}{a_n}-\frac{2}{{{b_n}{b_{n+1}}}}({n∈{N^*}})$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点M(-1,0),N(1,0),曲线E上任意一点到M的距离均是到点N距离的$\sqrt{3}$倍.
(1)求曲线E的方程;
(2)已知m≠0,设直线l1:x-my-1=0交曲线E于A,C两点,直线l2:mx+y-m=0交曲线E于B,D两点,C,D两点均在x轴下方,求四边形ABCD面积的最大值.

查看答案和解析>>

同步练习册答案