分析 (1)利用递推关系、等差数列与等比数列的通项公式即可得出.
(2)利用“裂项求和”方法、等比数列的求和公式即可得出.
解答 解:(1)Sn=2an-1,n≥2时,Sn-1=2an-1-1,∴an=Sn-Sn-1=2an-2an-1,即an=2an-1.
当n=1时,S1=a1=2a1-1,∴a1=1,
∴an是以1为首项,2为公比的等比数列,
∴${a_n}={2^{n-1}}$,
b1=a1=1,b4=a3=4,∴公差=$\frac{4-1}{3}$=1.
bn=1+(n-1)=n.
(2)${c_n}=\frac{1}{a_n}-\frac{2}{{{b_n}{b_{n+1}}}}={2^{1-n}}-\frac{2}{{n({n+1})}}={2^{1-n}}-2({\frac{1}{n}-\frac{1}{n+1}})$,
∴${T_n}=\frac{{1-\frac{1}{2^n}}}{{1-\frac{1}{2}}}-2({1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}})=2-\frac{1}{{{2^{n-1}}}}-2({1-\frac{1}{n+1}})=\frac{2}{n+1}-{2^{1-n}}$.
点评 本题考查了数列递推关系、等差数列与等比数列的通项公式与求和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 实数t有最小值1 | B. | 实数t有最大值1 | C. | 实数t有最小值$\frac{1}{2}$ | D. | 实数t有最大值$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${e^{\frac{1}{e}+2}}$ | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,$\frac{17}{4}$] | B. | (2,$\frac{17}{4}$]∪(-∞,-2) | C. | (2,8) | D. | (-∞,-2)∪(2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com