精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{{x}^{2}-6x+4,x≥0}\end{array}\right.$,若关于x的方程f2(x)-bf(x)+1=0有8个不同根,则实数b的取值范围是(  )
A.(2,$\frac{17}{4}$]B.(2,$\frac{17}{4}$]∪(-∞,-2)C.(2,8)D.(-∞,-2)∪(2,+∞)

分析 作函数f(x)的图象,从而可得方程x2-bx+1=0有2个不同的正解,且在(0,4]上,从而解得.

解答 解:作函数f(x)的图象如右图,

∵关于x的函数y=f2(x)-bf(x)+1有8个不同的零点,
∴方程x2-bx+1=0有2个不同的正解,且在(0,4]上;
∴$\left\{\begin{array}{l}{\frac{b}{2}>0}\\{△{=b}^{2}-4>0}\\{16-4b+1≥0}\end{array}\right.$,
解得,2<b≤$\frac{17}{4}$;
故选:A.

点评 本题考查了数形结合的思想应用及分段函数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足Sn=2an-1(n∈N*),{bn}是等差数列,且b1=a1,b4=a3
(1)求数列{an}和{bn}的通项公式;
(2)若cn=$\frac{1}{a_n}-\frac{2}{{{b_n}{b_{n+1}}}}({n∈{N^*}})$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点M(-1,0),N(1,0),曲线E上任意一点到M的距离均是到点N距离的$\sqrt{3}$倍.
(1)求曲线E的方程;
(2)已知m≠0,设直线l1:x-my-1=0交曲线E于A,C两点,直线l2:mx+y-m=0交曲线E于B,D两点,C,D两点均在x轴下方,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆$\frac{x^2}{16}+\frac{y^2}{3}=1$的左右焦点分别为F1,F2,一条直线经过F1与椭圆交于A,B两点,则△ABF2 的周长为(  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2klnx,g(x)=x2-2kx(k∈R)
(1)设h(x)=f(x)-g(x),试讨论函数h(x)的单调性
(2)设k>0,若函数y=f(x)的图象与y=g(x)的图象在区间(0,+∞)上有唯一交点,试求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A,B,C是△ABC的三个内角.
(1)3cos(B-C)-1=6cosBcosC,求cosA的值;
(2)若sin(A+$\frac{π}{6}$)=2cosA,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={x||x-2|<1,x∈R},集合B=Z,则A∩B={2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|2<x<4},B={x||x|≥1},则A∩B=(  )
A.(1,+∞)B.(2,4)C.(-∞,-1)∪(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用秦九韶算法计算多项式f(x)=10+25x-8x2+x4+6x5+2x6在x=-4时的值时,v3的值为(  )
A.-144B.-36C.-57D.34

查看答案和解析>>

同步练习册答案