精英家教网 > 高中数学 > 题目详情
8.已知A,B,C是△ABC的三个内角.
(1)3cos(B-C)-1=6cosBcosC,求cosA的值;
(2)若sin(A+$\frac{π}{6}$)=2cosA,求A.

分析 (1)利用两角和与差的余弦函数公式化简已知等式左边的第一项,移项合并后再利用两角和与差的余弦函数公式得出cos(B+C)的值,将cosA用三角形的内角和定理及诱导公式变形后,将cos(B+C)的值代入即可求出cosA的值;
(2)利用两角和与差的正弦公式、辅助角公式将已知等式变形,结合A的取值范围来求A的值即可.

解答 解:(1)3cos(B-C)-1=6cosBcosC,
化简得:3(cosBcosC+sinBsinC)-1=6cosBcosC,
变形得:3(cosBcosC-sinBsinC)=-1,
即cos(B+C)=-$\frac{1}{3}$,
则cosA=-cos(B+C)=$\frac{1}{3}$;
(2)sin(A+$\frac{π}{6}$)=2cosA,展开得$\frac{\sqrt{3}}{2}$sinA-$\frac{3}{2}$cosA=0,
即$\sqrt{3}$sin(A-$\frac{π}{3}$)=0.
因为0<A<π,所以A=$\frac{π}{3}$.

点评 此题考查了余弦定理,两角和与差的余弦函数公式,诱导公式,熟练掌握公式及定理是解本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,曲线$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.(α$是参数)与曲线$\left\{\begin{array}{l}{x=tcos\frac{π}{3}}\\{y=tsin\frac{π}{3}}\end{array}\right.$(t是参数)的交点的直角坐标为$({\frac{1}{2},\frac{{\sqrt{3}}}{2}})({-\frac{1}{2},-\frac{{\sqrt{3}}}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定积分${∫}_{-1}^{1}$ $\sqrt{1-{x}^{2}}$dx=(  )
A.1B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=x(x-2)(x-4)(x-6),则f′(2)=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{{x}^{2}-6x+4,x≥0}\end{array}\right.$,若关于x的方程f2(x)-bf(x)+1=0有8个不同根,则实数b的取值范围是(  )
A.(2,$\frac{17}{4}$]B.(2,$\frac{17}{4}$]∪(-∞,-2)C.(2,8)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设p:x2-x-20=0,q:log2(x-5)<2,则p是q的(  )
A.充分不必要条件B.必要不充分条 件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有60种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.学校生态园计划移栽甲乙两种植物各2株,设甲、乙两种植物的成活率分别是$\frac{2}{3}$和$\frac{1}{2}$,且各株植物是否成活互不影响,求移栽的4株植物中:
(1)恰成活一株的概率;
(2)成活的株数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知正四棱柱ABCD-A1B1C1D1中,AA1=4,AB=2,E是AA1的中点,则异面直线D1C与BE所成角的余弦值为(  )
A.$\frac{1}{5}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{10}}{10}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案