精英家教网 > 高中数学 > 题目详情
6.学校生态园计划移栽甲乙两种植物各2株,设甲、乙两种植物的成活率分别是$\frac{2}{3}$和$\frac{1}{2}$,且各株植物是否成活互不影响,求移栽的4株植物中:
(1)恰成活一株的概率;
(2)成活的株数的分布列和期望.

分析 (1)甲两株中活一株符合独立重复试验,概率为${C}_{2}^{1}$$\frac{2}{3}$$\frac{1}{3}$,同理可算乙两株中活一株的概率,两值相加即可;
(2)确定ξ的所有可能值为0,1,2,3,4,求出相应的概率,即可求出成活的株数ξ的分布列与期望.

解答 解:设Ak表示甲种植物成活k株,k=0,1,2,Bl表示甲种植物成活l株,l=0,1,2,
则Ak与Bl相互独立,$P({A_k})=C_2^k{(\frac{2}{3})^k}{(\frac{1}{3})^{2-k}}$,$P({B_l})=C_2^l{(\frac{1}{2})^l}{(\frac{1}{2})^{2-l}}$,
(1)设甲成活的概率是p(A1),乙成活的概率为$p({B_l})=C_2^l{(\frac{1}{2})^l}{(\frac{1}{2})^{2-l}}$,$P=P({A_0})P({B_1})+P({A_1})P({B_0})=\frac{1}{9}×\frac{1}{2}+\frac{4}{9}×\frac{1}{4}=\frac{1}{6}$;
(2)设成活的株数为ξ,则ξ的所有可能取值为0,1,2,3,4.$P(ξ=0)=\frac{1}{36}$$P(ξ=1)=\frac{1}{6}$$P(ξ=2)=\frac{13}{36}$$P(ξ=3)=\frac{1}{3}$$P(ξ=4)=\frac{1}{9}$,

         ξ01234
$p({B_l})=C_2^l{(\frac{1}{2})^l}{(\frac{1}{2})^{2-l}}$$\frac{1}{36}$$\frac{1}{6}$$\frac{13}{36}$$\frac{1}{3}$$\frac{1}{9}$
综上的分布列为Eξ=$0×\frac{1}{36}+1×\frac{1}{6}+2×\frac{13}{36}+3×\frac{1}{3}+4×\frac{1}{9}=\frac{7}{3}(株)$.

点评 本题考查的知识点是相互独立事件的概率乘法公式,离散型随机变量及其分布列,离散型随机变量的期望,其中在求随机变量ξ的分布列时,对随机变量的每一个取值,要注意不重不漏,以便准确的计算出ξ取得各值时的概率,这也是计算分布列及数学期望时最容易产生的错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若正数a,b满足3+log2a=2+log3b=log6(a+b),则$\frac{1}{a}+\frac{1}{b}$等于(  )
A.18B.36C.72D.144

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A,B,C是△ABC的三个内角.
(1)3cos(B-C)-1=6cosBcosC,求cosA的值;
(2)若sin(A+$\frac{π}{6}$)=2cosA,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“x<2”是“x2<4”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|2<x<4},B={x||x|≥1},则A∩B=(  )
A.(1,+∞)B.(2,4)C.(-∞,-1)∪(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将一根绳子对折,然后用剪刀在对折过的绳子上任意一处剪断,则得到的三条绳子的长度可以作为三角形的三边形的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.log26-log23-3${\;}^{{{log}_3}\frac{1}{2}}}$+(${\frac{1}{4}}$)${\;}^{-\frac{1}{2}}}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若sin(2x+$\frac{π}{3}$)=a(|a|≤1),则cos($\frac{π}{6}$-2x)的值是(  )
A.-aB.aC.|a|D.±a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图在平行四边形ABCD中,O是AC与BD的交点,P、Q、M、N分别是线段OA、OB、OC、OD的中点.在A、P、M、C中任取一点记为E,在B、Q、N、D中任取一点记为F.设G为满足向量$\overrightarrow{OG}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$的点,则在上述的点G组成的集合中的点,落在平行四边形ABCD外(不含边界)的概率为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案