精英家教网 > 高中数学 > 题目详情
16.如图在平行四边形ABCD中,O是AC与BD的交点,P、Q、M、N分别是线段OA、OB、OC、OD的中点.在A、P、M、C中任取一点记为E,在B、Q、N、D中任取一点记为F.设G为满足向量$\overrightarrow{OG}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$的点,则在上述的点G组成的集合中的点,落在平行四边形ABCD外(不含边界)的概率为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

分析 利用对立事件的概率公式求解即可.

解答 解:基本事件的总数是4×4=16,
在$\overrightarrow{OG}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$中,当$\overrightarrow{OG}$=$\overrightarrow{OP}$+$\overrightarrow{OQ}$,$\overrightarrow{OG}$=$\overrightarrow{OP}$+$\overrightarrow{ON}$,$\overrightarrow{OG}$=$\overrightarrow{ON}$+$\overrightarrow{OM}$,$\overrightarrow{OG}$=$\overrightarrow{OM}$+$\overrightarrow{OQ}$时,点G分别为该平行四边形各边的中点,此时点G在平行四边形的边界上,而其余情况的点G都在平行四边形外,
故所求的概率是1-$\frac{4}{16}$=$\frac{3}{4}$.
故选:C.

点评 本题考查对立事件的概率公式,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.学校生态园计划移栽甲乙两种植物各2株,设甲、乙两种植物的成活率分别是$\frac{2}{3}$和$\frac{1}{2}$,且各株植物是否成活互不影响,求移栽的4株植物中:
(1)恰成活一株的概率;
(2)成活的株数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知正四棱柱ABCD-A1B1C1D1中,AA1=4,AB=2,E是AA1的中点,则异面直线D1C与BE所成角的余弦值为(  )
A.$\frac{1}{5}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{10}}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{{\sqrt{1-{x^2}}}}{x}$的定义域为(  )
A.[-1,0)∪(0,1]B.[-1,1]C.[-1,0)∪(0,1)D.[-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的左、右焦点分别为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$,P是椭圆上一点,且△PF1F2面积的最大值为1.
(I)求椭圆的方程;
(II)过F2的直线交椭圆于M,N两点,求$\overrightarrow{{F_2}M}$•$\overrightarrow{{F_2}N}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x≥a},B={x|1≤x<2},且A∪∁RB=R,则实数a的取值范围是(  )
A.(-∞,1]B.(-∞,1)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=m(x-2m)(x+m+3),g(x)=2x-4.若同时满足条件:
①?x∈R,f(x)<0 或g(x)<0;
②?x∈(-∞,-4),f(x)g(x)<0.
求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为了得到函数y=$\sqrt{2}$cos3x的图象,可以将函数y=sin3x+cos3x的图象(  )
A.向右平移$\frac{π}{4}$个单位B.向左平移$\frac{π}{4}$个单位
C.向右平移$\frac{π}{12}$个单位D.向左平移$\frac{π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z=-1+i,则复数$\frac{z+3}{\overline z+2}$的模为(  )
A.$\sqrt{10}$B.$\frac{{\sqrt{10}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案