精英家教网 > 高中数学 > 题目详情
8.已知f(x)=m(x-2m)(x+m+3),g(x)=2x-4.若同时满足条件:
①?x∈R,f(x)<0 或g(x)<0;
②?x∈(-∞,-4),f(x)g(x)<0.
求m的取值范围.

分析 由①可推得f(x)=m(x-3m)(x+m+3)<0在x≥1时恒成立,建立关于m的不等式组可得m的范围,然后由②可得:?x∈(-∞,-4),使(x-3m)(x+m+3)<0成立,只要使-4比3m,-m-3中较小的一个大即可,分类讨论可得m的范围,综合可得答案.

解答 解:∵g(x)=2x-4,当x≥2时,g(x)≥0,
又∵?x∈R,f(x)<0或g(x)<0
∴f(x)=m(x-3m)(x+m+3)<0在x≥2时恒成立,
∴二次函数图象开口只能向下,且与x轴交点都在(2,0)的左侧,
即$\left\{\begin{array}{l}m<0\\-m-3<2\\ 3m<2\end{array}\right.$,解得-5<m<0;
又∵?x∈(-∞,-4),f(x)g(x)<0.
而此时有g(x)=2x-4<0.
∴?x∈(-∞,-4),使f(x)=m(x-3m)(x+m+3)>0成立,
由于m<0,∴?x∈(-∞,-4),使(x-3m)(x+m+3)<0成立,
故只要使-4比3m,-m-3中较小的一个大即可,
当m∈(-$\frac{3}{4}$,0)时,3m>-m-3,只要-4>-m-3,解得m>1与m∈(-$\frac{3}{4}$,0)的交集为空集;
当m=-$\frac{3}{4}$时,两根为-2;-2>-4,不符合;
当m∈(-5,-$\frac{3}{4}$)时,3m<-m-3,∴只要-4>3m,解得m<-$\frac{4}{3}$,
综上可得m的取值范围是:(-5,-$\frac{4}{3}$).

点评 此题考查了一元二次不等式的解法,指数函数的单调性及特殊点,利用了分类讨论的思想,分类讨论时要做到不重不漏,考虑问题要全面,是中档题也是易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.log26-log23-3${\;}^{{{log}_3}\frac{1}{2}}}$+(${\frac{1}{4}}$)${\;}^{-\frac{1}{2}}}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.偶函数f(x)(x∈R)满足:f(-4)=f(2)=0,且在区间[0,3]与[3,+∞)上分别递减和递增,则不等式x•f(x)<0的解集为(  )
A.(-∞,-4)∪(4,+∞)B.(-∞,-4)∪(-2,0)∪(2,4)C.(-∞,-4)∪(-2,0)D.(-4,-2)∪(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图在平行四边形ABCD中,O是AC与BD的交点,P、Q、M、N分别是线段OA、OB、OC、OD的中点.在A、P、M、C中任取一点记为E,在B、Q、N、D中任取一点记为F.设G为满足向量$\overrightarrow{OG}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$的点,则在上述的点G组成的集合中的点,落在平行四边形ABCD外(不含边界)的概率为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={(x,y)|x2+y2≤4,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为(  )
A.49B.45C.69D.73

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB=2,EF⊥AB,则EF与CD所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(3,m),且$\overrightarrow{b}$在$\overrightarrow{a}$上的投影为3,则向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,直线L:x+2y-10=0.
(1)椭圆上是否存在点M,它到直线L的距离最小?若存在,则求出M点坐标和最小距离.
(2)椭圆上是否存在点P,它到直线L的距离最大?若存在,则求出P点坐标和最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=x2-ax+lnx,a∈R.
(1)若a=0,求函数y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在[$\frac{1}{2}$,1]上是增函数,求实数a的取值范围;
(3)令g(x)=x2-f(x),x∈(0,e](e是自然对数的底数);求当实数a等于多少时,可以使函数g(x)取得最小值为3.

查看答案和解析>>

同步练习册答案