精英家教网 > 高中数学 > 题目详情
12.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.πB.C.2π+4D.3π+4

分析 由三视图可知:该几何体为圆柱的一半.

解答 解:由三视图可知:该几何体为圆柱的一半,
∴该几何体的体积V=$\frac{1}{2}×π×{1}^{2}×2$=π.
故选:A.

点评 本题考查了圆柱的三视图的及其体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.双曲线$\frac{x^2}{4}-\frac{y^2}{3}=1$的渐近线所在直线方程为(  )
A.$x=±\frac{{\sqrt{3}}}{3}y$B.$y=±\frac{{\sqrt{3}}}{3}x$C.$y=±\frac{{\sqrt{3}}}{2}x$D.$x=±\frac{{\sqrt{3}}}{2}y$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,3),则$\overrightarrow a•\overrightarrow b$=(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设$α∈(\frac{π}{2},π)$,且$sinα(sinα+cosα)=\frac{21}{25}$,则tanα的值为-7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线C1:$\frac{x^2}{16}-\frac{y^2}{4}$=1,双曲线C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,M 是双曲线C2 一条渐近线上的点,且OM⊥MF2,若△OMF2的面积为 16,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长为(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知p:方程x2+2x+m=0无实数根,q:方程$\frac{{x}^{2}}{m-1}$+y2=1是焦点在x轴上的椭圆,若“非p”与“p且q”同时为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知cosα=-$\frac{2}{3}$,则$\frac{1}{1+ta{n}^{2}α}$=$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的前n项和Sn,满足Sn=2an-1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=log2an,n∈N*,求数列{(-1)nbn2}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线y2=2px(p>0)截直线y=2x-4所得弦长$|{AB}|=3\sqrt{5}$,
( I)求抛物线的方程;
( II)设F是抛物线的焦点,求△ABF的外接圆上的点到直线AB的最大距离.

查看答案和解析>>

同步练习册答案