精英家教网 > 高中数学 > 题目详情
20.已知{an}是等比数列,a2=2,a4-a3=4,则此数列的公比q=2或-1.

分析 根据等比数列的通项公式建立方程关系即可.

解答 解:∵{an}是等比数列,a2=2,a4-a3=4,
∴a2q2-a2q=4,
即2q2-2q=4,
则q2-q-2=0.
解得q=2或-1,
故答案为:2或-1

点评 本题主要考查等比数列通项公式的应用,建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数y=$\sqrt{1-x}$+$\sqrt{x+3}$的最大值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=loga(1+x)-loga(1-x)的图象经过点(-$\frac{1}{2}$,-1).
(1)求实数a;
(2)判断函数f(x)的奇偶数,并写出f($\frac{1}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数是奇函数的是(  )
A.f(x)=(x-1)$\sqrt{\frac{1+x}{1-x}}$B.f(x)=$\frac{|x|}{x}$
C.f(x)=$\left\{\begin{array}{l}{1+x,(x≥0)}\\{1-x(x<0)}\end{array}\right.$D.f(x)=$\frac{1}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=$\frac{1}{2}$x2-mx+3lnx,g(x)=$\frac{2x+m}{{x}^{2}+3}$,a、b是f(x)的极值点,且0<a<b,
(1)求实数m的取值范围;
(2)指出g(x)在区间[-b,-a]上的单调性,并证明;
(3)设g(x)在区间[-b,-a]上的最大值比最小值大$\frac{2}{3}$,讨论方程f(x)=k的实数解个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$且$({\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.从(40,30),(50,10),(20,30),(45,5),(10,10)这5个点中任取一个点,这个点在圆x2+y2=2016内部的概率是(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.当-1≤x≤1,函数y=2x-2的值域为(  )
A.[-$\frac{3}{2}$,0]B.[0,$\frac{3}{2}$]C.[-1,0]D.[-$\frac{3}{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a,b,c为正实数,且a+b+c=1,证明:$\frac{1}{ab+2{c}^{2}+2c}$+$\frac{1}{bc+2{a}^{2}+2a}$+$\frac{1}{ca+2{b}^{2}+2b}$≥$\frac{1}{ab+bc+ca}$.

查看答案和解析>>

同步练习册答案