精英家教网 > 高中数学 > 题目详情

某公司拟投资开发某种新能源产品,估计能获得10万元至1000万元的投资收益.为加快开发进程,特制定了产品研制的奖励方案:奖金(万元)随投资收益(万元)的增加而增加,但奖金总数不超过9万元,同时奖金不超过投资收益的20%. 
现给出两个奖励模型:①;②.
试分析这两个函数模型是否符合公司要求?

模型1不符合,模型2符合

解析试题分析:解:(I)设奖励函数模型为,则公司对函数的模型的基本要求是:
(1)在区间上是增函数;(2) 恒成立;
(3)恒成立
对于模型①,当时,是增函数,
故该模型不符合公司要求.
对于模型②,当时,是增函数,且,以下检验是否符合第(3)个要求
.   当时,,所以在[10,1000]上是减函数,
从而,从而恒成立
考点:函数模型的运用
点评:主要是考查了函数的实际运用,以及模型的表示运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设a为实数,记函数的最大值为
(1)设t=,求t的取值范围,并把f(x)表示为t的函数m(t) ;
(2)求 ;
(3)试求满足的所有实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

国家助学贷款是由财政贴息的信用贷款(即无利息贷款),旨在帮助高校家庭经济困难学生支付在校学习期间所需的学费、住宿费及生活费.每一年度申请总额不超过6000元.某大学2013届毕业生小王在本科期间共申请了24000元助学贷款,并承诺在毕业后年内(按36个月计)全部还清.签约的单位提供的工资标准为第一年内每月1500元,第个月开始,每月工资比前一个月增加直到4000元.小王计划前12个月每个月还款额为500,第13个月开始,每月还款额比前一个月多元.
(1)假设小王在第个月还清贷款(),试用表示小王第)个月的还款额
(2)当时,小王将在第几个月还清最后一笔贷款?
(3)在(2)的条件下,他还清最后一笔贷款的那个月工资的余额是否能满足此月元的基本生活费?(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数对于任意的满足.
(1)求的值;
(2)求证:为偶函数;
(3)若上是增函数,解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某面包厂2011年利润为100万元,因市场竞争,若不开发新项目,预测从2012年起每年利润比上一年减少4万元.2012年初,该面包厂一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第年(为正整数,2012年为第一年)的利润为万元.设从2012年起的前年,该厂不开发新项目的累计利润为万元,开发新项目的累计利润为万元(须扣除开发所投入资金).
(1)求的表达式;
(2)问该新项目的开发是否有效(即开发新项目的累计利润超过不开发新项目的累计利润),如果有效,从第几年开始有效;如果无效,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2+2x+c(a、c∈N*)满足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若对任意的实数x∈,都有f(x)-2mx≤1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ) 若直线y=kx+1与f (x)的反函数的图像相切, 求实数k的值;
(Ⅱ) 设x>0, 讨论曲线y=f (x) 与曲线 公共点的个数.
(Ⅲ) 设a<b, 比较的大小, 并说明理由.   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lg(ax-bx)(a>1>b>0).
(1)求y=f(x)的定义域;
(2)在函数y=f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x轴;
(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,校园内计划修建一个矩形花坛并在花坛内装置两个相同的喷水器。已知喷水器的喷水区域是半径为5m的圆。问如何设计花坛的尺寸和两个喷水器的位置,才能使花坛的面积最大且能全部喷到水?

查看答案和解析>>

同步练习册答案