分析 (1)利用等差数列的通项公式即可得出;
(2)先证an<1.易知an>0,且{an}为递增数列,利用递推关系可得:$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}>-\frac{1}{n^2}$,利用“累加求和”方法即可证明.再证${a_n}≥\frac{n}{2n+1}$,当n=1时,${a_1}=\frac{1}{3}≥\frac{1}{2×1+1}$成立,由an<1,可得:$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}<-\frac{1}{{1+{n^2}}}$,利用“累加求和”方法即可得出.
解答 (1)解:设等差数列公差为d,则2t+d=3,
又${1^2}•{S_2}={1^2}({S_1}+{a_1})+a_1^2$,
得a1=1或a1=-3,
但当a1=-3时,d=9,无法使${n^2}{S_{n+1}}={n^2}({S_n}+{a_n})+a_n^2$恒成立,
∴t=1.
(2)先证an<1.
易知an>0,${a_{n+1}}-{a_n}=\frac{a_n^2}{n^2}>0$,故{an}为递增数列,
从而${a_{n+1}}={a_n}+\frac{a_n^2}{n^2}<{a_n}+\frac{{{a_n}{a_{n-1}}}}{n^2}$,
∴$\frac{1}{a_n}<\frac{1}{{{a_{n+1}}}}+\frac{1}{n^2}$有$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}>-\frac{1}{n^2}$,
由叠加法有$\frac{1}{a_n}-\frac{1}{a_1}>-[\frac{1}{1^2}+\frac{1}{2^2}+…+\frac{1}{{{{(n-1)}^2}}}]$(n≥2),
注意到$\frac{1}{k^2}<\frac{1}{k(k-1)}=\frac{1}{k-1}-\frac{1}{k}$(k≥2),
∴$\frac{1}{a_n}-\frac{1}{a_1}>[\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{(n-1)}^2}}}]$,$>-[1+(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n-2}-\frac{1}{n-1})]$=$\frac{1}{n-1}-2$
从而$\frac{1}{a_n}>1+\frac{1}{n-1}>1$,即an<1(n≥2),
又${a_1}=t=\frac{1}{3}<1$,有an<1(n∈N*)成立.
再证${a_n}≥\frac{n}{2n+1}$,
当n=1时,${a_1}=\frac{1}{3}≥\frac{1}{2×1+1}$成立,
由an<1,${a_{n+1}}={a_n}+\frac{a_n^2}{n^2}<{a_n}+\frac{a_n}{n^2}⇒{a_n}>\frac{n^2}{{1+{n^2}}}{a_{n+1}}$,
从而${a_{n+1}}={a_n}+\frac{a_n^2}{n^2}={a_n}+\frac{a_n}{n^2}•{a_n}$$>{a_n}+\frac{a_n}{n^2}•\frac{n^2}{{1+{n^2}}}{a_{n+1}}$=${a_n}+\frac{{{a_n}{a_{n+1}}}}{{1+{n^2}}}$
∴$\frac{1}{a_n}>\frac{1}{{{a_{n+1}}}}+\frac{1}{{1+{n^2}}}$,即有$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}<-\frac{1}{{1+{n^2}}}$,
叠加有$\frac{1}{a_n}-\frac{1}{a_1}<-[\frac{1}{{1+{1^2}}}+\frac{1}{{1+{2^2}}}+…+\frac{1}{{1+{{(n-1)}^2}}}]$(n≥2),
又$\frac{1}{{1+{k^2}}}>\frac{1}{{k+{k^2}}}=\frac{1}{k}-\frac{1}{k+1}$,
从而$\frac{1}{a_n}-\frac{1}{a_1}<-[\frac{1}{{1+{1^2}}}+\frac{1}{{1+{2^2}}}+…+\frac{1}{{1+{{(n-1)}^2}}}]$$<-[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…(\frac{1}{n-1}-\frac{1}{n})]$=$\frac{1}{n-1}$
∴$\frac{1}{a_n}<2+\frac{1}{n}=\frac{2n+1}{n}$,即有${a_n}>\frac{n}{2n+1}$(n≥2),
综上${a_n}≥\frac{n}{2n+1}$(n∈N*).
点评 本题考查了递推关系、不等式的性质、“累加求和”方法,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2a>4a | B. | 2lga<lga | C. | a2+|a|≤0 | D. | |a+$\frac{1}{a}}$|<2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com