精英家教网 > 高中数学 > 题目详情
数列{an}中,an+2=an+1-an,a1=2,a2=5,则a2015的值是(  )
A、-2B、2C、-5D、5
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:由已知分别求出数列的前几项,得到数列的周期,由周期求得a2015的值.
解答: 解:由an+2=an+1-an,a1=2,a2=5,得
a3=a2-a1=5-2=3,
a4=a3-a2=3-5=-2,
a5=a4-a3=-2-3=-5,
a6=a5-a4=-5-(-2)=-3,
a7=a6-a5=-3-(-5)=2,
a8=a7-a6=2-(-3)=5,

由上可知,数列{an}是以6为周期的周期数列,
则a2015=a6×335+5=a5=-5.
故选:C.
点评:本题考查了数列递推式,关键是通过求解得到数列的周期,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=axlnx+b(a,b为常数)在(1,0)处切线方程y=x-1
(Ⅰ)试求a,b的值.  
(Ⅱ)若方程f(x)=m有两不等实数根,求m的范围.
(Ⅲ)g(x)=f′(x),A(x1,y1),B(x2,y2)为y=g(x)曲线上不同两点,记直线AB的斜率为k,证明:k>g′(
x1+x2
2
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-4x+2,函数g(x)=(
1
3
f(x)
(1)若f(2+π+x)=f(2-π-x),求f(x)的解析式;
(2)若g(x)有最大值3,求a的值,并求出g(x)的值域;
(3)已知a≤1,若函数y=f(x)-log2
x
8
在区间[1,2]内有且只有一个零点,试确定实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:
lna1
2
lna2
5
lna3
8
lnan
3n-1
=
3n+2
2
(n∈N*),则a10=(  )
A、e26
B、e29
C、e32
D、e35

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合 A={x|0<x<1},B={x|x≥1},则正确的是(  )
A、A∩B={x|0<x<1}
B、A∩B=∅
C、A∪B={x|0<x<1}
D、A∪B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C是三内角,当sinC(cosAcosB+sinAsinB)-
3
cos(A+B)取得最大值时,则A=(  )
A、
π
6
B、
π
4
C、
π
3
D、
12

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(n)为n2+1(n∈N*)的各位数字之和,如:142+1=197,1+9+7=17,则f(14)=17;记f1(n)=f(n),f2(n)=f(f1(n)),f3(n)=f (f2(n)),…fk+1(n)=f(fk(n)),k∈N*
则f2015(9)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一个分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a1,a2}的不同分拆种数是(  )
A、8B、9C、16D、18

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinπx的最小正周期为
 

查看答案和解析>>

同步练习册答案