精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C所对的边分别为a、b、c,且a、b、c成等比数列,若关于角B的不等式cos2B-2mcosB+2>0恒成立,求m的取值范围.
考点:等比数列的性质,正弦定理
专题:计算题,等差数列与等比数列
分析:根据余弦定理表示出cosB,再根据基本不等式,可得
1
2
≤cosB<1.将关于B的表达式化简,分离参数,利用基本不等式,可得结论.
解答: 解:∵b2=ac
∴cosB=
a2+c2-b2
2ac
2ac-ac
2ac
=
1
2

当且仅当a=b=c时,cosB=
1
2

1
2
≤cosB<1
cos2B-2mcosB+2=2cos2B-2mcosB+1>0
∴2m<2cosB+
1
cosB

1
2
≤cosB<1,
∴2cosB+
1
cosB
的最小值为2
2

∴2m<2
2

∴m<
2

故m的取值范围是(-∞,
2
).
点评:本题主要考查余弦定理和基本不等式的应用.对三角函数求解得问题时要先对其原函数进行化简.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)、g(x)分别是定义在R上的奇函数和偶函数,g(x)恒不为0,当x<0时,f′(x)g(x)-f(x)g′(x)>0,且f(3)=0,则不等式f(x)g(x)<0的解集是(  )
A、(-3,0)∪(3,+∞)
B、(-3,0)∪(0,3)
C、(-∞,-3)∪(3,+∞)
D、(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

复数(
1
2
+
3
2
i)2012的共轭复数是(  )
A、-
1
2
+
3
2
i
B、-
1
2
-
3
2
i
C、
1
2
+
3
2
i
D、
1
2
-
3
2
i

查看答案和解析>>

科目:高中数学 来源: 题型:

将直线3x-4y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2-2x-4y+4=0相切,则实数λ的值为(  )
A、-3或7B、-2或8
C、0或10D、1或11

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+|x-a|+1,g(x)=2x+t.
(1)若f(x)为偶函数,求a的值;
(2)当a=2时,若f(x)的图象恒在g(x)图象上方,求t的取值范围;
(3)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有20个不同的小球,其中有n(n∈N*,n>1)个红球,4个蓝球,10个黄球,其余为白球,已知从袋中取出2个颜色相同的彩球(不是白球)的概率为
26
95

(1)求袋中的红球、白球各有多少个?
(2)从袋中任取2个球,求其中一定有红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图)
分 组 频率
频率
组距
[1000,1500)  
 
 
 
[1500,2000)  
 
0.0004
[2000,2500)  
 
 
 
[2500,3000)  
 
0.0005
[3000,3500)  
 
 
 
[3500,4000]  
 
0.0001
合 计  
 
 
 
(1)根据频率分布直方图完成以上表格;
(2)用组中值估计这10 000人月收入的平均值;
(3)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2000,3500)(元)月收入段应抽出多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x-ln|x|.
(1)判断函数f(x)的奇偶性,并说明理由;
(2)请用描点法画出函数f(x)的大致图象;
(2)设实常数a,b满足ab>0,试求f(x)在闭区间[a,b]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果椭圆
x2
16
+
y2
4
=1上任意两点连线的垂直平分线与x轴相交于点P(x0,0),求x0的取值范围.

查看答案和解析>>

同步练习册答案