精英家教网 > 高中数学 > 题目详情
9.已知等差数列{an}的首项为1,公差d≠0,且a1、a2、a4成等比数列.
(1)求数列{an}的通项公式与前n项和Sn
(2)设bn=$\frac{1}{{S}_{n}}$(n∈N*),求使不等式b1+b2+…+bn>$\frac{9}{5}$成立的最小正整数n.

分析 (1)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;
(2)利用“裂项求和”可得b1+b2+…+bn=$\frac{2n}{n+1}$,再解不等式$\frac{2n}{n+1}$>$\frac{9}{5}$即可求得最小正整数n.

解答 解:(1)∵a1、a2、a4成等比数列,
∴${a}_{2}^{2}={a}_{1}{a}_{4}$,
∴(1+d)2=1×(1+3d),化为d2-d=0,
∵d≠0,解得d=1.
∴an=1+(n-1)=n,Sn=$\frac{n(1+n)}{2}$.
(2)bn=$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$,
∴b1+b2+…+bn=$2[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$2(1-\frac{1}{n+1})$=$\frac{2n}{n+1}$.
不等式b1+b2+…+bn>$\frac{9}{5}$化为$\frac{2n}{n+1}$$>\frac{9}{5}$,∴n>9.
∴使不等式b1+b2+…+bn>$\frac{9}{5}$成立的最小正整数n=10.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“裂项求和”方法、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设P1、P2…,P20是方程z20=1的20个复根在复平面上所对应的点,以这些点为顶点的直角三角形的个数为(  )
A.360B.180C.90D.45

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的公差为2,前n项和为Sn,且S1、S2、S4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=(-1)n-1$\frac{4n}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一位测量爱好者在与金茂大厦顶部同一水平线上的B处测得金茂大厦顶部A的仰角为15.66°,再向金茂大厦前进500米到C处,测得金茂大厦顶部A的仰角22.81°,他能算出金茂大厦的高度呢?若能算出,请计算其高度?(精确到1米)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若tanα=2,求$\frac{2sin2α}{1+cos2α}$•$\frac{co{s}^{2}α}{cos2α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(k+$\frac{4}{k}$)lnx+$\frac{4-{x}^{2}}{x}$,其中常数k>0.
(1)当k=1时,求f(x)在定义域上的单调区间;
(2)若k∈[4,+∞),曲线y=f(x)上总存在相异两点M(x1,y1),N(x2,y2)使得曲线y=f(x)在M,N两点的切线互相平行,求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.四棱锥S-ABCD的底面ABCD是正方形,AC与BD相交于点O,且SO⊥平面ABCD,若四棱锥S-ABCD的体积为12,底面对角线的长为2$\sqrt{8}$,则侧面与底面所成的二面角等于60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=3cosx-sin2x+1,若f(x)≥a-3恒成立,则a的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=logsinx(2cosx+1)的定义域为{x|2kπ<x<2kπ+$\frac{2π}{3}$,且x≠2kπ+$\frac{π}{2}$,k∈Z}.

查看答案和解析>>

同步练习册答案