精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(1)求证:AB⊥PE;
(2)求二面角A-PB-E的大小.
考点:二面角的平面角及求法,空间中直线与直线之间的位置关系
专题:空间位置关系与距离,空间角
分析:(1)连结PD,由已知得PD⊥AB,BC⊥AB,DE⊥AB,由此能证明AB⊥PE.
(2)由已知得PD⊥AB,PD⊥平面ABC,DE⊥PD,ED⊥AB,从而DE⊥平面PAB,过D做DF垂直PB与F,连接EF,则EF⊥PB,∠DFE为所求二面角的平面角,由此能求出二面角的A-PB-E大小.
解答: (1)证明:连结PD,∵PA=PB,∴PD⊥AB.
∵DE∥BC,BC⊥AB,DE⊥AB.
又∵PD∩DE=E,∴AB⊥平面PDE,
∵PE?平面PDE,∴AB⊥PE.
(2)解:∵平面PAB⊥平面ABC,
平面PAB∩平面ABC=AB,PD⊥AB,PD⊥平面ABC.
则DE⊥PD,又ED⊥AB,PD∩平面AB=D,
DE⊥平面PAB,
过D做DF垂直PB与F,连接EF,则EF⊥PB,
∴∠DFE为所求二面角的平面角
∴DE=
3
2
,DF=
3
2
,则tan∠DFE=
DE
DF
=
3

故二面角的A-PB-E大小为60°.
点评:本题考查异面直线垂直的证明,考查二面角的大小的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设变量x、y满足约束条件
2x-y≤2
x-y≥-1
x+y≥1
,则z=2x+3y的最大值为(  )
A、18B、2C、3D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,|BC|=2,
|AB|
|AC|
=
1
2
,求点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ-
π
4
)=3
2
,曲线C2的直角坐标方程为
x2
16
+
y2
9
=1.
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)已知P为曲线C2上一点,Q为曲线C1上一点,求P、Q两点间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,
3
sinx),
n
=(sinx,cosx),设函数f(x)=
m
n

(Ⅰ)求函数f(x)的解析式,并求f(x)在区间[-
π
4
π
6
]上的最小值;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,若f(A)+f(-A)=
3
2
,b+c=7,△ABC的面积为2
3
,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|ax-1>0},B={x|x2-3x+2>0}.
(1)若A∩B=A,求实数a的取值范围;
(2)若A∩∁RB≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),直线y=x+
6
与以原点为圆心,以椭圆C的短半轴为半径的圆相切,F1,F2为其左右焦点,P为椭圆C上的任意一点,△F1PF2的重心为G,内心为I,且IG∥F1F2
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A为椭圆C上的左顶点,直线∫过右焦点F2与椭圆C交于M,N两点,若AM,AN的斜率k1,k2满足k1+
k2=-
1
2
,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)的左、右焦点为F1、F2,其上顶点为A.已知△F1AF2是边长为2的正三角形.
(1)求椭圆C的方程;
(2)过点Q(-4,0)任作一动直线l交椭圆C于M,N两点,记
MQ
=λ•
QN
,若在线段MN上取一点R使得
MR
=-λ•
RN
,试判断当直线l运动时,点R是否在某一定直线上运动?若在请求出该定直线,若不在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2+
1
x4
,求函数的值域.

查看答案和解析>>

同步练习册答案