精英家教网 > 高中数学 > 题目详情

设函数f(x)=bcosx+csinx的图象经过两点(0,1)和数学公式,对一切x∈[0,π],|f(x)+a|≤3恒成立,则实数a的取值范围________.

[-2,1]
分析:依题意可求得b=1,c=,从而可根据x∈[0,π],|f(x)+a|≤3恒成立,利用正弦函数的性质解决.
解答:依题意得:f(0)=bcos0+csin0=b=1,
f()=bcos+csin=c=
∴f(x)=cosx+sinx=2sin(x+).
又x∈[0,π],
≤x+
∴-≤sin(x+)≤1,
∴-1≤2sin(x+)≤2,即-1≤f(x)≤2,
∴-2≤-f(x)≤1;
∵|f(x)+a|≤3恒成立,
∴-3≤f(x)+a≤3,
∴-3-f(x)≤a≤3-f(x).
∴a≥[-3-f(x)]max=-2且a≤[3-f(x)]min=1,
∴-2≤a≤1.
∴实数a的取值范围为[-2,1].
故答案为:[-2,1].
点评:本题考查绝对值不等式的解法,考查两角和与差的正弦函数与正弦函数的单调性,考查综合分析与应用能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))
处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=msinx+cosx(x∈R)的图象经过点(
π
2
,1)

(Ⅰ)求y=f(x)的解析式,并求函数的最小正周期和单调递增区间
(Ⅱ)若f(
π
12
)=
2
sinA
,其中A是面积为
3
3
2
的锐角△ABC的内角,且AB=2,求AC和BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
ax+b
x2+c
的图象如图所示,则a、b、c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

选考题
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定义域为R,求实数m的取值范围.
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆C:
x=cosθ
y=sinθ
(θ为参数,0≤θ≤π)
上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C上的弧AP的长度均为
π
3

(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题四个命题:
①若f(x)是定义在[-1,1]上的偶函数,且在[-1,0)上是增函数,θ∈(
π
4
π
2
)
,则f(sinθ)>f(cosθ);
②在△ABC中,A>B是cosA<cosB的充要条件;
③设函数f(x)=x2+2(-2≤x<0),其反函数为f-1(x),则f-1(3)=-1或1.
④在△ABC中,角A、B、C所对的边分别为a、b、c,已知b2+c2=a2+bc,则A=
π
3

其中真命题的个数有(  )

查看答案和解析>>

同步练习册答案