已知是函数的一个极值点,其中.
(1)与的关系式;
(2)求的单调区间;
(3)当时,函数的图象上任意一点处的切线的斜率恒大于,求的取值范围.
科目:高中数学 来源: 题型:解答题
已知函数
(1)若函数在上单调递减,在上单调递增,求实数的值;
(2)是否存在实数,使得在上单调递减,若存在,试求的取值范围;
若不存在,请说明理由;
(3)若,当时不等式有解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数().
(1)当时,求的图象在处的切线方程;
(2)若函数在上有两个零点,求实数的取值范围;
(3)若函数的图象与轴有两个不同的交点,且,求证:(其中是的导函数).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b为常数).
(1)若g(x)在x=l处的切线方程为y=kx-5(k为常数),求b的值;
(2)设函数f(x)的导函数为f’(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;
(3)令F(x)=f(x)-g(x),若函数F(x)存在极值,且所有极值之和大于5+1n2,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ex,a,bR,且a>0.
⑴若a=2,b=1,求函数f(x)的极值;
⑵设g(x)=a(x-1)ex-f(x).
①当a=1时,对任意x (0,+∞),都有g(x)≥1成立,求b的最大值;
②设g′(x)为g(x)的导函数.若存在x>1,使g(x)+g′(x)=0成立,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com