精英家教网 > 高中数学 > 题目详情

已知函数上为增函数,
(1)求的值;
(2)当时,求函数的单调区间和极值;
(3)若在上至少存在一个,使得成立,求的取值范围.

(1) ;
(2) 函数的单调增区间是,递减区间为  , 有极大值为;
(3) .

解析试题分析:(1)因为函数上为增函数,所以上恒成立;由此可有,由.
(2) 令,根据函数单调递增,函数单调递减,即函数的单调增区间是,递减区间为 ,有极大值为.
(3) 令,分情况讨论:
?当时,,所以:
恒成立,此时不存在使得成立  
?当时,
,∴, 又,∴上恒成立。
上单调递增,∴  
,则故所求的取值范围为 
(1)由已知上恒成立    
      ∵,∴
上恒成立,只需
,∴只有,由       3分
(2)∵,∴
 (4分),

的变化情况如下表:

   

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是函数的一个极值点,其中
(1)的关系式;
(2)求的单调区间;
(3)当时,函数的图象上任意一点处的切线的斜率恒大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)求函数的单调区间;
(2)请问,是否存在实数使上恒成立?若存在,请求实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调性;
(2)若函数处取得极值,不等式对任意恒成立,求实数的取值范围;
(3)当时,证明不等式 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的单调区间和极值;
(2)若关于的方程有3个不同实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x=-是函数f(x)=ln(x+1)-x+x2的一个极值点。
(1)求a的值;
(2)求曲线y=f(x)在点(1,f(1))处的切线方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数为常数)的图像与轴交于点,曲线在点处的切线斜率为.
(1)求的值及函数的极值;
(2)证明:当时,
(3)证明:对任意给定的正数,总存在,使得当时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为圆周率,为自然对数的底数.
(1)求函数的单调区间;
(2)求这6个数中的最大数与最小数;
(3)将这6个数按从小到大的顺序排列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

同步练习册答案