精英家教网 > 高中数学 > 题目详情
(1)已知f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9,求f(x)的解析式.
(2)若f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-2x+3.求f(x)的解析式.
分析:(1)设出一次函数解析式,然后代入3f(x+1)-f(x)=2x+9,由系数相等列式求解a,b的值,则答案可求;
(2)设x<0,由题目给出的x>0时的解析式,利用函数奇偶性的性质求解x<0的解析式,再由定义在实数上的奇函数有f(0)=0即可得到完整答案.
解答:解:(1)∵f(x)是一次函数,∴设f(x)=ax+b(a≠0).
由3f(x+1)-f(x)=2x+9,得3[a(x+1)+b]-ax-b=2x+9.
即2ax+3a+2b=2x+9,
2a=2
3a+2b=9
,解得
a=1
b=3

∴f(x)=x+3;
(2)∵f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2-2x+3,
设x<0,则-x>0,
由x>0时,f(x)=x2-2x+3,
∴f(-x)=(-x)2-2(-x)+3=x2+2x+3.
-f(x)=x2+2x+3,∴f(x)=-x2-2x-3.
又定义在R上的奇函数有f(0)=0.
f(x)=
x2-2x+3,(x>0)
0,(x=0)
-x2-2x-3,(x<0)
点评:本题考查了函数奇偶性的性质,考查了利用代入法求函数解析式,给出了函数在某一区间上的解析式,求函数在另一区间上的解析式时,常用的方法是把变量转化到给定解析式的区间上,该题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知f(x)是一次函数,且2f(1)+3f(2)=3,2f(-1)-f(0)=-1,求f(x)的解析式;
(2)已知f(x)是二次函数,且f(x+1)+f(x-1)=2x2-4x,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下说法正确的是
③④
③④

①lg9•lg11>1.
②用数学归纳法证明“1+a+a2+…+an+1=
1-an+21-a
(n∈N*,a≠1)
”在验证n=1时,左边=1.
③已知f(x)是R上的增函数,a,b∈R,则f(a)+f(b)≥f(-a)+f(-b)的充要条件是a+b≥0.
④用分析法证明不等式的思维是从要证的不等式出发,逐步寻找使它成立的充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x)的表达式.
(2)化简求值:
6
1
4
+
382
+0.027-
2
3
×(-
1
3
)-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x)的解析式;
(2)求函数y=5-x+
3x-1
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)是一次函数,且f(f(x))=4x+3,求f(x)的解析式;
(2)已知f(
x
+1)=x+2
x
,求f(x);
(3)已知f(x)满足2f(x)+f(
1
x
)
=3x,求f(x).

查看答案和解析>>

同步练习册答案