精英家教网 > 高中数学 > 题目详情

(本大题满分14分)

已知数列满足:,,其中为实数,为正整数.

(Ⅰ)对任意实数,证明:数列不是等比数列;

(Ⅱ)证明:当时,数列是等比数列;

(Ⅲ)设为实常数), 为数列的前项和.是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由.

 

【答案】

解: (Ⅰ)证明:假设存在一个实数,使{an}是等比数列,则有

即(2=2矛盾.

所以{an}不是等比数列.                                       …… 4分

(Ⅱ)解:因为bn+1=(-1)n+1[an+1-3(n-1)+21]=(-1)n+1(an-2n+14)

=-(-1)n·(an-3n+21)=-bn  

当λ≠-18时,b1=-(λ+18) ≠0,由上可知bn≠0,∴(n∈N+).

故当λ≠-18时,数列{bn}是以-(λ+18)为首项,-为公比的等比数列…8分

(Ⅲ)由(2)知,当λ=-18,bn=0,Sn=0,不满足题目要求.      ……9分

∴λ≠-18,故知bn= -(λ+18)·(-n-1,于是可得

Sn=--             ………10分

要使a<Sn<b对任意正整数n成立,

即a<-(λ+18)·[1-(-n]<b(n∈N+) , 

当n为正奇数时,1<f(n)

∴f(n)的最大值为f(1)=,         f(n)的最小值为f(2)= ,     …………………………  12分

于是,由①式得

当a<b3a时,由,不存在实数满足要求

当b>3a存在λ,使得对任意正整数n,都有a<Sn<b,且λ的取值范围是)…14分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本大题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.

如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用平方米塑料片制成圆柱的侧面和下底面(不安装上底面).

(1)当圆柱底面半径取何值时,取得最大值?并求出该

最大值(结果精确到0.01平方米);

(2)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出

用于灯笼的三视图(作图时,不需考虑骨架等因素).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省八市高三3月联考文科数学试卷(解析版) 题型:解答题

(本大题满分14分)

已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于

(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;

(Ⅱ)当时,过点的直线交曲线两点,设点关于轴的对称点为(不重合).求证直线轴的交点为定点,并求出该定点的坐标.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市高三上学期第二次月考理科数学试卷(解析版) 题型:解答题

(本大题满分14分)

已知,,当为何值时,平行?平行时它们是同向还是反向?

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广州市七区联考高二数学(文)下学期期末监测 题型:解答题

(本大题满分14分)

如图,已知直线L:过椭圆C:的右焦点F,

且交椭圆C于A、B两点,点A、B在直线上的射影依次为点D、E.

(Ⅰ)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;

(Ⅱ)若为x轴上一点;

求证: A、N、E三点共线.

 

 

 

 

 

查看答案和解析>>

同步练习册答案