(本大题满分14分)
已知△
的两个顶点
的坐标分别是
,
,且
所在直线的斜率之积等于
.
(Ⅰ)求顶点
的轨迹
的方程,并判断轨迹
为何种圆锥曲线;
(Ⅱ)当
时,过点
的直线
交曲线
于
两点,设点
关于
轴的对称点为
(
不重合).求证直线
与
轴的交点为定点,并求出该定点的坐标.
(1) (1) 当
时 轨迹
表示焦点在
轴上的椭圆,且除去
两点;
当
时 轨迹
表示以
为圆心半径是1的圆,且除去
两点;
当
时 轨迹
表示焦点在
轴上的椭圆,且除去
两点;
当
时 轨迹
表示焦点在
轴上的双曲线,且除去
两点
(2) 直线
过定点
【解析】
试题分析:(Ⅰ)由题知:
化简得:
……………………………2分
当
时 轨迹
表示焦点在
轴上的椭圆,且除去
两点;
当
时 轨迹
表示以
为圆心半径是1的圆,且除去
两点;
当
时 轨迹
表示焦点在
轴上的椭圆,且除去
两点;
当
时 轨迹
表示焦点在
轴上的双曲线,且除去
两点;
……………………………6分
(Ⅱ)设![]()
依题直线
的斜率存在且不为零,则可设
:
,
代入
整理得![]()
,
, ………………………………9分
又因为
不重合,则![]()
![]()
的方程为
令
,
得![]()
故直线
过定点
. ……………………………13分
解二:设![]()
![]()
依题直线
的斜率存在且不为零,可设
:![]()
代入
整理得:![]()
,
, ……………………………9分
![]()
的方程为
令
,
得![]()
直线
过定点
……………………………13分
考点:考查了圆锥曲线方程,以及直线与圆锥曲线的位置关系
点评:解决含参数的曲线方程的问题,主要是关注我们方程的特点来分类讨论得到,同时能结合设而不求的思想求解坐标,进而求解直线方程,属于中档题。
科目:高中数学 来源: 题型:
(本大题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用
平方米塑料片制成圆柱的侧面和下底面(不安装上底面).
(1)当圆柱底面半径
取何值时,
取得最大值?并求出该
最大值(结果精确到0.01平方米);
(2)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出
用于灯笼的三视图(作图时,不需考虑骨架等因素).
查看答案和解析>>
科目:高中数学 来源:2012-2013学年北京市高三上学期第二次月考理科数学试卷(解析版) 题型:解答题
(本大题满分14分)
已知
,
,当
为何值时,![]()
与![]()
平行?平行时它们是同向还是反向?
查看答案和解析>>
科目:高中数学 来源:2011-2012学年安徽省高三第一学期期中考试理科数学 题型:解答题
(本大题满分14分)
已知数列
和
满足:
,
,
,其中
为实数,
为正整数.
(Ⅰ)对任意实数
,证明:数列
不是等比数列;
(Ⅱ)证明:当
时,数列
是等比数列;
(Ⅲ)设
(
为实常数),
为数列
的前
项和.是否存在实数
,使得对任意正整数
,都有
?若存在,求
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2009-2010学年广州市七区联考高二数学(文)下学期期末监测 题型:解答题
(本大题满分14分)
如图,已知直线L:
过椭圆C:
的右焦点F,
且交椭圆C于A、B两点,点A、B在直线
上的射影依次为点D、E.
![]()
(Ⅰ)若抛物线
的焦点为椭圆C的上顶点,求椭圆C的方程;
(Ⅱ)若
为x轴上一点;
求证: A、N、E三点共线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com